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Motivation

• Supervised learning is good for interaction with 
humans, but labels from a supervisor are hard to 
obtain 

• Clustering is unsupervised learning, i.e. it tries to 
lear only from the data 

• Main idea: find a similarity measure and group 
similar data objects together 

• Clustering is a very old research field, many 
approaches have been suggested 

• Main problem in most methods: how to find a 
good number of clusters
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Clustering using Mixture Models

• The full posterior of the Gaussian Mixture Model is
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p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡ | ↵)p(µ,⌃ | �)
data likelihood 

(Gaussian)
correspondence 

prob. (Multinomial)
mixture prior 

(Dirichlet)
parameter prior 

(Gauss-IW)

xi

In this model, we use: 
•      
•      
•      

µ = (µ1, . . . ,µK)

⌃ = (⌃1, . . . ,⌃K)
(µk,⌃k) = ✓k



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

↵ ⇡

zi

�

✓k

N

K

Clustering using Mixture Models

• The full posterior of the Gaussian Mixture Model is
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p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡ | ↵)p(µ,⌃ | �)
data likelihood 

(Gaussian)
correspondence 

prob. (Multinomial)
mixture prior 

(Dirichlet)
parameter prior 

(Gauss-IW)

xi

Given this model, we can 
create new samples: 
1.Sample        from priors 
2.Sample corresp. 
3.Sample data point 

⇡,✓k

zi
xi
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Clustering using Mixture Models

• The full posterior of the Gaussian Mixture Model is
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p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡ | ↵)p(µ,⌃ | �)
data likelihood 

(Gaussian)
correspondence 

prob. (Multinomial)
mixture prior 

(Dirichlet)
parameter prior 

(Gauss-IW)

xi

An equivalent formulation 
of this model is this: 
1.Sample        from priors 
2.Sample params     from: 

3.Sample data point 

⇡,✓k

xi

✓̄i

p(✓̄i | ⇡,✓k) =
KX

k=1

⇡k�(✓k, ✓̄i)



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

↵ ⇡ �

✓k

N

K
✓̄i

G(⇡,✓k) =
KX

k=1

⇡k�(✓k, ✓̄i)

Clustering using Mixture Models

What is the difference in that model? 

• there is one parameter    for each observation  

• intuitively: we first sample the location of the 
cluster and then the data that corresponds to it 

In general, we use the notation: 

                             where
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xi

✓̄i xi

⇡ ⇠ Dir(
↵

K
1)

“Base distribution”✓k ⇠ H(�)

✓̄i ⇠ G(⇡,✓k)

However: We need to know K
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The Dirichlet Process

• So far, we assumed that K is known 

• To extend that to infinity, we use a trick: 

Definition: A Dirichlet process (DP) is a distribution 

over probability measures G, i.e.               and  

                 . If for any partition                    it holds:  

then G is sampled from a Dirichlet process. 

Notation:  

where      is the concentration parameter 
and      is the base measure
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G(✓) � 0Z
G(✓)d✓ = 1 (T1, . . . , TK)

(G(T1), . . . , G(TK)) ⇠ Dir(↵H(T1), . . . ,↵H(TK))

G ⇠ DP(↵, H)

↵

H
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Repetition

• The Dirichlet distribution is defined as: 

• It is the conjugate prior for  
the multinomial distribution 

• There, the parameter        can  
be interpreted as the effective 
number of observations for  
every state

8

Dir(µ | ↵) =
�(↵0)

�(↵1) · · ·�(↵K)

KY

k=1

µ↵k�1
k

↵0 =
KX

k=1

↵k

0  µk  1
KX

k=1

µk = 1

The simplex for K=3

↵
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•     controls the strength 
of the distribution 
(“peakedness”) 

•      control the location 
of the peak

↵0

Some Examples
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↵k
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Intuitive Interpretation

• Every sample from a Dirichlet distribution is a 
vector of K positive values that sum up to 1, i.e. 
the sample itself is a finite distribution 

• Accordingly, a sample from a Dirichlet process is 
an infinite (but still discrete!) distribution

10

Base distribution 
(here Gaussian)

Infinitely many 
samples  (sum up to 1)
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Construction of a Dirichlet Process

• The Dirichlet process is only defined implicitly, i.e. 
we can test whether a given probability measure is 
sampled from a DP, but we can not yet construct 
one. 

• A DP can be constructed using the “stick-
breaking” analogy: 

• imagine a stick of length 1 

•we select a random number β between 0 and 1 from a 
Beta-distribution 

•we break the stick at π = β * length-of-stick 

•we repeat this infinitely often

11
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The Stick-Breaking Construction

• formally, we have 

• now we define

12
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(1� �l) = �k(1�
k�1X
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⇡l)

✓k ⇠ HG(✓) =
1X

k=1

⇡k�(✓k,✓) then: G ⇠ DP(↵, H)
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The Chinese Restaurant Process

• Consider a restaurant with infinitely many tables 

• Everytime a new customer comes in, he sits at an 
occupied table with probability proportional to 
the number of people sitting at that table, but he 
may choose to sit on a new table with decreasing  
probability as more customers enter the room.

13
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The Chinese Restaurant Process

• It can be shown that the probability for a new 
customer is 

• This means that currently occupied tables are 
more likely to get new customers (rich get richer) 

• The number of occupied tables grows 
logarithmically with the number of customers

14

p(✓̄N+1 = ✓ | ✓̄1:N ,↵, H) =
1

↵+N

 
↵H(✓) +

KX

k=1

Nk�(✓̄k,✓)

!
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The DP for Mixture Modeling

• Using the stick-breaking construction, we see that 
we can extend the mixture model clustering to the 
situation where K goes to infinity 

• The algorithm can be implemented using Gibbs 
sampling

15
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Affinity Propagation

• Often, we are only given a similarity matrix for 
the data points 

• The idea of Affinity Propagation is to determine 
cluster centers (“exemplars”) that explain other 
data points in an optimal way 

• This is similar to k-medoids, but the algorithm is 
more robust against local minima 

• Idea: each data point must choose another data 
point as its exemplar; some points will choose 
themselves as exemplar 

• The number of clusters is then found automatically

16
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Affinity Propagation

• Input: similarity values s(i,j)   
• Initialize the responsibilities r(i,j), and the 

availabilities a(i,j) to 0 

• do until convergence: 

•recompute the responsibilities: 

•recompute the availabilities: 

• the j that maximizes r(i,j) + a(i,j) is the exemplar of i

17

r(i, j) = s(i, j)�max

j0 6=j
{a(i, j0) + s(i, j0)}

a(i, j) = min

8
<

:0, r(j, j) +
X

i0 /2{i,j}

max{0, r(i0, j)}

9
=

;
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Affinity Propagation

• Intuitively: 

•responsibility measures how much i thinks that j 
would be a good exemplar 

•availability measures how strongly j things it should 

be an exemplar for i 
• The algorithm can be shown to be equivalent to 

max-product loopy belief propagation 

• Convergence is not guaranteed, but with 
“damping” oscillations can be avoided 

• The number of clusters can be controlled by the 
“self-similarity”

18
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Affinity Propagation

• Colours: how much each point wants to be an exemplar 

• Edge strengths: how much a point wants to belong to a 
cluster 

19

Fig 1, Frey & Dueck
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di =
NX

j=1

wij

D =

Spectral Clustering

• Consider an undirected graph that connects all 
data points 

• The edge weights are the similarities (“closeness”) 

• We define the weighted degree    of a node as the 
sum of all outgoing edges

20

W =

di

d1
d2
d3
d4
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvalue 0

21

L = D �W
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvector 0 

•the matrix is symmetric and positive semi-definite

22

L = D �W
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvector 0 

•the matrix is symmetric and positive semi-definite 

• With these properties we can show: 

Theorem: The set of eigenvectors of L with 
eigenvalue 0 is spanned by the indicator vectors  
                  , where       are the K connected 
components of the graph.

23

L = D �W

1A1 , . . . ,1AK Ak
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The Algorithm

• Input: Similarity matrix W 

• Compute L = D - W 

• Compute the eigenvectors that correspond to the 
K smallest eigenvalues 

• Stack these vectors as columns in a matrix U 

• Treat each row of U as a K-dim data point 

• Cluster the N rows with K-means clustering 

• The indices of the rows that correspond to the 
resulting clusters are those of the original data 
points.

24
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An Example

• Spectral clustering can handle complex problems 
such as this one 

• The complexity of the algorithm is O(N ), because 
it has to solve an eigenvector problem 

• But there are efficient variants of the algorithm

25
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Further Remarks

• To account for nodes that are highly connected, 
we can use a normalized version of the graph 
Laplacian 

• Two different methods exist: 

•    

•    

• These have similar eigenspaces than the original 
Laplacian L 

• Clustering results tend to be better than with the 
unnormalized Laplacian

26

Lrw = D�1L = I �D�1W

Lsym = D� 1
2LD� 1

2 = I �D� 1
2WD� 1

2
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Summary

• Several Clustering methods: 

•Dirichlet process mixture model does not require the 
number of clusters to be known; full Bayesian 

•Affinity Propagation: iterative approach where 
exemplars are determined as cluster centers 

•Spectral clustering uses the graph Laplacian and 
performs an eigenvector analysis 

•Hierarchical approaches can be bottom-up or top-
down

27


