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Exercise 1: Warm up

a) What multiple of a = (1, 1, 1) is closest to the point b = (2, 4, 4)? Find also the
closest point to a on the line through b.

There is some vector p = λa, λ ̸= 0 which is closest to b. Then p is perpendicular
to the vector b− p which means pT (b− p) = 0. We just need to find λ, so we solve
λaT (b− λa) = 0 and get λ = aT b

aT a
.

Plugging in the numbers, we get λ = 10
3
, so the closest point is λa = 10

3
(1, 1, 1).

Equivalently the closest point to a is µb = 10
36
b = 10

36
(2, 4, 4).

b) Prove that the trace of P = aaT/aTa always equals 1.

We just unfold aaT =

a1
...
an

(
a1 . . . an

)
=


a21 a1a2 . . . a1an
a2a1 a22 . . . a2an

...
... . . . ...

ana1 ana2 . . . a2n

.

Also aTa =
∑

i a
2
i . Therefore the trace of P is Tr(P ) = Tr(aaT/aTa) =

a21+...a2n∑
i a

2
i

= 1.

c) Show that the length of Ax equals the length of ATx if AAT = ATA.

||Ax||2 = (Ax)T (Ax) = xTATAx = xTAATx = (ATx)T (ATx) = ||ATx||2.

d) Which 2× 2 matrix projects the x,y plane onto the line x+ y = 0?

We are looking for the matrix A ∈ R2×2 that when multiplied with any vector

v =

(
x
y

)
∈ R2 gives us a vector u that is a projection of v on the line x+ y = 0 or

otherwise it is a vector p = λ

(
1
−1

)
. This means that Av = p and pT (v − p) = 0.
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Solving for λ ̸= 0 we get

pT (v − p) = 0

λ(1 − 1)(

(
x
y

)
− λ

(
1
−1

)
) = 0

λ(x− y)− 2λ2 = 0

λ =
1

2
(x− y)

⇒ p =
1

2
(x− y)

(
1
−1

)
So we have

Av = p(
a11 a12
a21 a22

)(
x
y

)
=

1

2
(x− y)

(
1
−1

)
⇒

{
a11x+ a12y = 1

2
x− 1

2
y

a21x+ a22y = −1
2
x+ 1

2
y

And since we have no other constraint for A, we use the obvious solution

A =
1

2

[
1 −1
−1 1

]

Exercise 2: Determinants

a) If a square matrix A has determinant 1
2
, find det(2A), det(−A), det(A2) and det(A−1).

det(2A) = 2n det(A) = 2n
1

2
= 2n−1

det(−A) = (−1)n det(A) = ±1

2

det(A2) = det(AA) = det(A) det(A) = (
1

2
)2 =

1

4

det(A−1) = det(A)−1 = (
1

2
)−1 = 2

b) Find the determinants of

A =

14
2

 [
2 −1 2

]
, U =


4 4 8 8
0 1 2 2
0 0 2 6
0 0 0 2

 , UT and U−1
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det(A) = 0 ( A has rank 1 so it is not invertible )

det(U) =
∏

λ∈{4,1,2,2}

λ = 16 (product of the eigenvalues which lie on the diagonal on a triangular matrix)

det(UT ) = det(U) = 16

det(U−1) = det(U)−1 =
1

16

Exercise 3: Eigenvalues and Eigenvectors

a) Find the eigenvalues and eigenvectors of

A =

3 4 2
0 1 2
0 0 0

 and B =

0 0 2
0 2 0
2 0 0

 , their traces and their determinants.

det(A− λI) = (3− λ)(1− λ)(−λ) = 0 ⇒ λ ∈ {3, 1, 0}

To find the eigenvectors we plug in the eigenvalues and solve the linear system
Ax = λx for x ̸= 0. The corresponding eigenvectors are then1

0
0

 ,

−2
1
0

 and

 2
−2
1


The trace and determinant are

Tr(A) = 3 + 1 + 0 = 4

det(A) = 0

For matrix B we have

det(B − λI) = (−λ)(2− λ)(−λ) + 2(−2)(2− λ) = 0

(λ2 − 4)(2− λ) = 0

(λ+ 2)(λ− 2)(2− λ) = 0

⇒ λ ∈ {−2, 2, 2}

The corresponding eigenvectors are then 1
0
−1

 ,

1
0
1

 and

0
1
0
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The trace and determinant are

Tr(B) = 0 + 2 + 0 = 2

det(B) = 2(0− 4) = −8

Typically eigenvectors are normalized to have length 1 but any multiple of an ei-
genvector is also an eigenvector.

b) Using the characteristic polynomial, find the relationship between the trace, the
determinants and the eigenvalues of any square matrix A.

We can factor the characteristic polynomial as a function of λ as

det(A− λI) = p(λ) = (−1)n(λ− λ1) · · · (λ− λn) (1)

where λi are the roots of the polynomial and the eigenvalues of A. We can simply
set λ = 0 and find that

det(A) = p(0) = (−1)n(−λ1) · · · (−λn) = (−1)n
n∏

i=1

(−λi) = (−1)n
n∏

i=1

(−1)(λi)

= (−1)n(−1)n
n∏

i=1

λi = (−1)2n
n∏

i=1

λi =
n∏

i=1

λi

So the determinant of a matrix is equal to the product of its eigenvalues.

Let us deal with the trace. Consider the 2× 2 case

det(A) =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc

det(A− λI) =

∣∣∣∣a− λ b
c d− λ

∣∣∣∣
= (a− λ)(d− λ)− bc

= ad− bc− λ(a+ d) + λ2

= λ2 − λ · Tr(A) + det(A)

Considering the n× n case and focusing on the diagonal, we find that

det(A− λI) = (−λ)n + (−λ)n−1 · Tr(A) +
n−2∑
j=2

βjλ
j + det(A) (2)

Comparing equations (1) and (2) we see that

Tr(A) = λ1 + λ2 + . . .+ λn =
n∑

i=1

λi (3)
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c) Diagonalize the unitary matrix V to reach V = UΛU∗. All |λ| = 1. V = 1√
3

[
1 1− i

1 + i −1

]
We have

det(V − λI) = (
1√
3
− λ)(− 1√

3
− λ)− 1

3
(1 + i)(1− i)

= (
1√
3
− λ)(− 1√

3
− λ)− 2

3

= −1

3
+ λ2 − 2

3
= λ2 − 1 = (λ− 1)(λ+ 1)

Eigenvalues are λ ∈ {1,−1} and corresponding eigenvectors are

x1 =
1√

1 + 2c2

(
1

c+ ic

)
and x2 =

1√
1 + 2c2

(
−c+ ic

1

)
where c =

√
3−1
2

.

Note that we could arrange the eigenvectors differently but since the matrix U is
unitary, we have to keep the diagonal entries real. Now we can write matrix U as

U =
1√

1 + 2c2

[
1 −c+ ic

c+ ic 1

]
Therefore our decomposition can be written as

V =
1

1 + 2c2

[
1 −c+ ic

c+ ic 1

] [
1 0
0 −1

] [
1 c− ic

−c− ic 1

]
d) Suppose T is a 3× 3 upper triangular matrix with entries tij. Compare the entries

of T ∗T and TT ∗. Show that if they are equal, then T must be diagonal. (All normal
triangular matrices are diagonal)

Let T =

a b c
0 d e
0 0 f

 with a, b, c, d, e, f ∈ C.

Then

T ∗T =

ā 0 0
b̄ d̄ 0
c̄ ē f̄

a b c
0 d e
0 0 f

 =

āa āb āc
b̄a b̄b+ d̄d b̄c+ d̄e
c̄a c̄b+ ēd c̄c+ ēe+ f̄f


TT ∗ =

a b c
0 d e
0 0 f

ā 0 0
b̄ d̄ 0
c̄ ē f̄

 =

aā+ bb̄+ cc̄ bd̄+ cē cf̄
db̄+ ec̄ dd̄+ eē ef̄
f c̄ f ē f f̄



Now if TT ∗ = T ∗T we see from the diagonal entries that −bb̄ = cc̄ and b̄b = eē.
So, it must be that b = c = e = 0 and therefore T is diagonal.
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Exercise 4: Singular Value Decomposition

a) Find the singular values and singular vectors of

A =

[
1 4
2 8

]
Eigenvalues of ATA are

det(ATA− λI) = λ(λ− 85) = 0

⇒ λ ∈ {0, 85}

Eigenvectors of ATA are
(
−4
1

)
and

(
1
4

)
with norm

√
17.

Eigenvalues of AAT are also λ ∈ {0, 85}

Eigenvectors of AAT are
(
−2
1

)
and

(
1
2

)
with norm

√
5.

Therefore:

A =
1√
17

[
−4 1
1 4

] [
0 0

0
√
85

]
1√
5

[
−2 1
1 2

]

b) Explain how UΣV T expresses A as a sum of r rank-1 matrices: A = σ1u1v
T
1 + . . .+

σrurv
T
r

We see the factorization as

A = UΣV T = U(ΣV T ) =
[
u1 . . . um

]



σ1 0 0 0 0

. . . 0
0 σr 0 0 0
0 . . . 0 0 0 0

0 . . . 0 0
. . . 0


v

T
1
...
vTn




=
[
u1 . . . um

]


σ1v
T
1

...
σrv

T
r

0
...
0


= σ1u1v

T
1 + . . .+ σrurv

T
r + 0 · ur+1 + . . .+ 0 · um

Note that for the rank it holds r ≤ m and r ≤ n.

c) If A changes to 4A what is the change in the SVD?

If A = UΣV ∗ then 4A = 4UΣV ∗ = U(4Σ)V ∗. We apply the scaling to the singular
values and leave the singular vectors normalized as they are.
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What is the SVD for AT and for A−1 ?

If A = UΣV ∗ then AT = (UΣV ∗)T = V ΣTUT The singular values stay in the dia-
gonal, but the dimensions of matrix Σ swap.

If A = UΣV ∗ then we can only compute the pseudoinverse A+ = (UΣV ∗)+ =
(V ∗)−1Σ+U−1 = V Σ+U∗ Since U, V are unitary, their (conjugate) transpose is also
their inverse. The reciprocals of the singular values are in the diagonal.

d) Find the SVD and the pseudoinverse of A =
[
1 1 1 1

]
, B =

[
0 1 0
1 0 0

]
and C =

[
1 1
0 0

]
The SVD of A will be A = UΣV ∗ where U is 1× 1 meaning a scalar and since it is
unitary it is 1, therefore A = ΣV ∗.

ATA =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 and AAT = 4

Then

det(AAT − λI) = 4− λ = 0

⇒ λ = 4

and

det(ATA− λI) = . . . = λ3(λ− 4) = 0

⇒ λ ∈ {0, 4}

For λ = 4 we get one eigenvector v1 =
1
2


1
1
1
1

. For λ = 0 we get three eigenvectors

with only one constraint, that the sum of their entries is zero. We choose them to be
orthogonal to each other and normalize them, so that matrix V is indeed unitary.

v2 =
1√
2


1
−1
0
0

 v3 =
1√
2


0
0
1
−1

 v4 =
1

2


1
1
−1
−1


AAT has one eigenvalue λ = 4, therefore σ = 2 and Σ =

[
2 0 0 0

]
since A has

rank 1.

7



We now can write the SVD of A:

A = UΣV ∗ =
[
1
] [
2 0 0 0

]
c


c c c c
1 −1 0 0
0 0 1 −1
c c −c −c


where c = 1√

2
.

The pseudoinverse of A is then

A+ = V ΣU∗ = c


c 1 0 c
c −1 0 c
c 0 1 −c
c 0 −1 −c




1
2

0
0
0

 [
1
]
=

c2

2


1
1
1
1

 =
1

4


1
1
1
1


For B we have

B = UΣV ∗ =

[
0 1
1 0

] [
1 0 0
0 1 0

]1 0 0
0 1 0
0 0 1


and therefore pseudoinverse

B+ = V Σ+U∗ =

1 0 0
0 1 0
0 0 1

1 0
0 1
0 0

[
0 1
1 0

]
=

0 1
1 0
0 0



Finally, for C we have

C = UΣV ∗ =

[
1 0
0 1

] [√
2 0
0 0

]
1√
2

[
1 1
1 −1

]
and therefore pseudoinverse

C+ = V Σ+U∗ =
1√
2

[
1 1
1 −1

] [ 1√
2

0

0 0

] [
1 0
0 1

]
=

[
1
2

0
1
2

0

]
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Topic 2: Probabilistic Reasoning

Exercise 5: Follow the robot

Assume you get your hands on a robot that can measure its distance to a wall in front
of it. You model this using a continuous random variable with a Normal distribution
N (x;µ, σ2).

a) The robot also has a camera on board that is not color-calibrated correctly so the
color mapping is probabilistic and looks like the following table:

z
x R G B

R 0.8 0.1 0.1
G 0.1 0.6 0.2
B 0.1 0.3 0.7

For instance, the probability that the robot reads blue while the true color is green is
p(z = B|x = G) = 0.3
Assume the robot is located in a white room with 5 boxes: 2 red, 2 green and a blue
one. The robot moves towards a box and the camera reads green. How likely is it
that the box is actually green?

We simply apply Bayes rule:

p(X = G|Z = G) =
p(Z = G|X = G)p(X = G)

p(Z = G)

=
p(Z = G|X = G)p(X = G)∑

x∈{R,G,B} p(Z = G|X = x)p(X = x)

=
0.62

5

0.12
5
+ 0.62

5
+ 0.21

5

=
0.24

0.04 + 0.24 + 0.04

=
0.24

0.32
=

3

4
= 0.75

b) The robot’s distance sensor can be modeled using a continuous random variable
with a Normal distribution with σ1 = 0.3 m. Express the sensor model p(z|x) in the
full form (not the shorthand notation).

p(z | x) = N(z|x, σ2
1) =

1√
2πσ2

1

e
− 1

2
(z−x)2

σ2
1 =

1

0.3
√
2π

e−5.55(z−x)2 (4)

where σ1 = 0.3 is the sensor noise.
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c) Now the robot moves into another room that is empty. Initially it knows it is located
at the door (x=0). The robot can execute move commands but the result of the
action is not always perfect. Assume that the robot moves with constant speed v.
The motion can also be modeled with a Gaussian with deviation σ2 = 0.1 m. Write
the motion model p(xt|xt−1, ut).

The motion can also be modeled with a Gaussian. We just need to think about what
is our mean and what is our variance. The variance is given as the actuator noise
σ2 = 0.1. Our mean is the position we expect our robot to be at, after the motion
ut. Since our robot moves with constant speed v, the expected position is simply
µ = xt−1 + v∆t. Therefore we have

p(xt|xt−1, ut) = N(xt|xt−1 + v∆t, σ2
2)

=
1√
2πσ2

2

e
− 1

2

(xt−(xt−1+v∆t))2

σ2
2

=
10√
2π

e−50(xt−(xt−1+v∆t))2

d) You let the robot run in the room with a speed of 1 m/s. The robot only runs
forward and it updates its belief every second. Assume you get the following sensor
measurements in the first 3 seconds: {z1 = 1.2, z2 = 1.6, z3 = 2.5}.
Further assume that the position can only take discrete values from 0 to 5. Where
does the robot believe it is located with respect to the door after 3 seconds? How
certain is it about its location?

We model the state variable x as a discrete random variable with values between 0
and 5, where 0 means that the robot is at the door. We want to compute the robot’s
belief. Initially, the robot knows it is located at the door (x=0), therefore we have
Bel(x0 = 0) = 1. We then use the Bayes filter algorithm to compute the belief after
3 seconds, namely Bel(x3). Since it is a recursive algorithm we have to compute the
belief at every time step. The general equation of the Bayes filter is:

Bel(xt) = η p(zt|xt)

∫
p(xt|ut, xt−1)Bel(xt−1)dxt−1 (5)

Our ui, namely our action is always the same: move with constant speed v = 1m/s.
Here is the first step:

Bel(x1) = η1p(z1|x1)

∫
p(x1|u1, x0)Bel(x0)dx0 (6)

= η1p(z1|x1)

∫
p(x1|u1, x0)dx0 (7)

= η1N(z1|x1, σ
2
1)

5∑
x0=0

N(x1|x0 + 1, σ2
2) (8)

= η1N(z1|x1, σ
2
1)N(x1|x0 + 1, σ2

2) (9)
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Let us separate the computation to the motion and the sensing part. Since we have
Bel(x0 = 0) = 1 we begin from the motion u1.

p(x1|u1, x0) = N(x1|x0 + 1, σ2
2) (10)

The belief of the robot after the first motion can be estimated as

Bel′(x1) =
5∑

x0=0

N(x1|x0 + 1, σ2
2) (11)

Now we take into account the sensor measurement z1:

p(z1|x1) = N(z1|x1, σ
2
1) (12)

Therefore

Bel(x1) = η1p(z1|x1)Bel′(x1) (13)

Since our positions are restricted to a space xt ∈ {0, 1, 2, 3, 4, 5}, we can compute
our normalizers ηi using (the inverse of) the sum of the probabilities for all possible
states.

η−1
1 =

5∑
x′
1=0

Bel(x1 = x′
1) (14)

If we recursively substitute the beliefs we get:

Bel(x3) = η3p(z3|x3)

∫
p(x3|u3, x2)Bel(x2)dx2

= η3p(z3|x3)

∫
p(x3|u3, x2)η2p(z2|x2)

∫
p(x2|u2, x1)Bel(x1)dx1dx2

Plugging the numbers in we get the following table:

x 0 1 2 3 4 5
Bel(x0) 1 0 0 0 0 0
Bel(x1) 0.0001 0.9998 6.8798e-24 2.6318e-95 5.5977e-215 0
Bel(x2) 3.9381e-11 0.0762 0.9237 8.3773e-27 3.7763e-59 2.7476e-138
Bel(x3) 2.6757e-26 2.3196e-07 0.2499 0.7500 2.1622e-27 4.3797e-63

We can see that the robot believes that it is 3m away from the door and is about
75% certain.
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Exercise 6: An overview of ML methods

Try to find (for example by internet search or from the book (Bishop or )) at least
5 examples for learning techniques that have not been discussed in class. Describe these
techniques briefly and classify them with respect to the categories presented in the lecture.

Here are some examples of learning algorithms:

• Mean-shift clustering: Unsupervised learning

• Perceptron algorithm: Discriminant function

• Neural Networks: Discriminative model

• Bayes classifier: Generative model

• Conditional Random Field: Discriminative model

• AdaBoost: Discriminant function

For a detailed explanation, please see the textbook Pattern Recognition and Machine
Learning by C.M. Bishop or the slides.

The next exercise class will take place on May 13th, 2016.

For downloads of slides and of homework assignments and for further information on the
course see

https://vision.in.tum.de/teaching/ss2016/mlcv16
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