
TU München

Fakultät für Informatik

PD Dr. Rudolph Triebel

John Chiotellis

Machine Learning for Robotics and Computer Vision
Summer term 2016

Homework Solution 2
Topic 1: Regression
May 13th, 2016

Exercise 1: Bayesian Update

Consider a linear regression model with basis functions φ(x) as presented in the lecture.
We assume a Gaussian prior distribution for the weights:

p(w) = N(w|m0, S0)

Suppose we have already observed N data points, so the posterior distribution is

p(w|t) = N(w|mN , SN)

with

mN = SN(S
−1
0 m0 + σ−2ΦT t) and S−1

N = S−1
0 + σ−2ΦTΦ.

Now, we observe a new data point (xN+1, tN+1). What is the new posterior?

Using Bayes rule, we found out that having a Gaussian prior and a Gaussian likelihood
gave us a Gaussian posterior which we can use as the prior for the next iteration (next
sample that we observe). Now we want to compute p(w|t, tN+1, xN+1) which reduces to
p(w|tN+1, xN+1,mN , SN).

Our likelihood is

p(tN+1|xN+1,w) = N(tN+1|y(w, φ(x)), σ2)

Let φN = φ(xN) to simplify notation. Writing the likelihood explicitly we get

p(tN+1|xN+1,w) =
1√
2πσ2

exp

(
−(tN+1 −wTφN+1)

2

2σ2

)
Our posterior is

p(w|tN+1, xN+1,mN , SN) =
p(tN+1|xN+1,w)p(w|t)

p(tN+1|xN+1, t)

1

We want the maximum likelihood of the posterior. The denominator is independent
of w so we can ignore it.

p(w|tN+1, xN+1,mN , SN) ∝ p(w|t)p(tN+1|xN+1,w)

∝ exp

(
−1

2
(w−mN)

TS−1
N (w−mN)−

(tN+1 −wTφN+1)
2

2σ2

)
Maximizing the likelihood is equivalent to maximizing the log-likelihood and that is

the same as minimizing the negative log-likelihood. Therefore we are left only with the
arguments of the exponential, and we can omit the −1

2
factors.

(w−mN)
TS−1

N (w−mN) +
(tN+1 −wTφN+1)

2

σ2

=wTS−1
N w− 2wTS−1

N mN − 2
wTφN+1tN+1

σ2
+
wTφN+1φ

T
N+1w

σ2
+ const.

=wT (S−1
N +

φN+1φ
T
N+1

σ2
)w− 2wT

(
S−1
N mN +

φN+1tN+1

σ2

)
+ const.

where const. denotes remaining terms that are independent of w.

Comparing this expression with the maximum likelihood for the prior, we can see that
our posterior is

p(w|tN+1, xN+1,mN , SN) = N(w|mN+1, SN+1)

with

S−1
N+1 = S−1

N +
1

σ2
φN+1φ

T
N+1 and mN+1 = SN+1(S

−1
N mN +

φN+1tN+1

σ2
)

Exercise 2: Quadrocopter (Programming)

We are testing a tracking program. We evaluate it with the help of a quadrocopter. The
quadrocopter sends estimates of its velocity and the tracking program estimates its global
position with respect to the quadrocopter's initial position (before �ying).

a) The tracker yields these tracked position estimates at a frequency of 1Hz:

T =

 2

0
1

 1.08
1.68
2.38

 −0.83
1.82
2.49

 −1.97
0.28
2.15

 −1.31
−1.51
2.59

 0.57
−1.91
4.32

Plot these data with your tool of choice (e.g. Matlab).

b) Assuming the quadrocopter �ies with constant speed, which speed does it have?
What is the residual error of the estimation?

2

Abbildung 1: Tracker data from quadrocopter. The lines are just an interpolation between
the tracked positions (data points).

The task is to estimate the speed of the quadrocopter. We do this using polynomial
regression. The functions that we learn are dependent on time. We have to �nd three
functions, one for each coordinate (x, y, z). The regression is done with the matrix
Φ and vectors ti:

Φ =

1 0
1 1
1 2
1 3
1 4
1 5

 tx =

2

1.08
−0.83
−1.97
−1.31
0.57

 ty =

0

1.68
1.82
0.28
−1.51
−1.91

 tz =

1

2.38
2.49
2.15
2.59
4.32

The second column of Φ are the timestamps at which the measurements have been
taken. In this �rst case, we assume constant velocity, i.e. we don't have acceleration
and the motion equation has only two unkowns w0 and w1, i.e. for the case of the
x-coordinates we have

x(τ) = w0 + w1τ, wx = (w0, w1)
T

where τ = 0, 1, . . . is the time stamp. Thus, Φ has two cloumns.

The pseudoinverse of Φ is

Φ† =

(
0.524 0.381 0.238 0.095 −0.048 −0.190
−0.143 −0.086 −0.029 0.029 0.086 0.143

)
With this we compute wi = Φ†ti:

wx = Φ†tx =

(
1.0267
−0.4421

)
wy =

(
1.5383
−0.5918

)
wz =

(
1.2825
0.4830

)
3

Considering our model the speed in the 3 dimensions is given by
v = (w1x w1y w1z)

T = (−0.4421 − 0.5918 0.4830)T .
The speed's magnitude is therefore ‖v‖ = 0.8827.
The residual errors are de�ned as

rx = ‖Φwx − tx‖ = 2.8902

ry = ‖Φwy − ty‖ = 2.4571

rz = ‖Φwz − tz‖ = 1.2807

c) Now assume that the quadrocopter �ies with constant acceleration. What is the
residual error now? Is the error higher or lower? Why?

Now we have a quadratic motion equation:

x(τ) = w0 + w1τ + w2τ
2, wx = (w0, w1, w2)

T ,

where w1 is velocity and w2 is (half the) acceleration. This means we have to estimate
3 function parameters. Thus, the matrix Φ has one more column, i.e.

Φ =

1 0 0
1 1 1
1 2 4
1 3 9
1 4 16
1 5 25

Again, we compute the pseudoinverse and multiply it with the vectors ti. We obtain:

wx =

 2.4739
−2.6128
0.4341

 wy =

 0.4573
1.0297
−0.3243

 wz =

 1.4656
0.2084
0.0549

The residual errors now are

(rx ry rz) = (1.1474 1.4527 1.2359)

By incorporating acceleration in our model, we increased the model complexity (3
basis functions instead of 2). Therefore our model is able to capture the actual mo-
tion of the quadrocopter more precisely and that is why the residual errors are lower.

d) According to our last model, what is the quadrocopter's most likely position in the
next second?

If we want to estimate the position in the next second, we can imagine a new row
in our Φ matrix φ6 = (1 6 36). Multiplying this row with our model parameters
w for the last model gives us the estimate:

t′6 = (φ6wx φ6wy φ6wz) = (2.4259 − 5.0397 4.6930)

4

Topic 2: Probabilistic Graphical Models

Exercise 3: Reading a graphical model

We have the following graphical model:

Abbildung 2: Graphical model.

a) Write the joint probability distribution corresponding to the graphical model depic-
ted in Fig. 2.

p(A,B,C,D,E) = p(A)p(C)p(B | A,C)p(D | C)p(E | B)

b) What are the conditional independence assumptions of this model?

• A ⊥⊥ C | ∅,
• D ⊥⊥ A,B | C,
• E ⊥⊥ A,C,D | B.

c) Which of the following assertions are true, and why?

Algorithm to check, whether X is d-seperated from Y by Z (X,Y,Z sets of nodes):

boolean is_dsep(X,Y,Z){

foreach x ∈ X, y ∈ Y

foreach path p connecting x and y

if (!is_blocked(p,Z)) return false;

end;

end;

return true;

}

boolean is_blocked(p,Z){

foreach n ∈ p

5

if (type(n) == hh)

if (n /∈ Z ∧ m /∈ Z ∀ n→ . . .→m)

return true; //case (b)

end

else //type(n) == ht or type(n) == tt

if (n ∈ Z)

return true; //case (a)

end

end

end

return false;

}

• B is d-separated from D by C: true (case (a)),

• A is d-separated from C by E: false (case (b) fails as B → E),

• A is d-separated from C by D: true (case (b)),

• E is d-separated from D by B: true (case (a)),

• E is d-separated from D by A: false.

6

Exercise 4: Markov Chain

We have the following Markov Chain:

a) Write the joint probability distribution associated to this Markov Chain.

p(A,B,C,D) =
1

Z
ψA,B(A,B)ψB,C(B,C)ψC,D(C,D)

b) Each variable can take value 0 or 1, and we want to express that it is 9 times more
probable that neighboring variables have equal values than they have di�erent value.
Give the potential functions of this Markov Chain.

All three potential functions are the same:

V1

V2 0 1

0 9 1
1 1 9

Notice that the values need not be normalized in any way.

c) Compute the probability distributions p(A) and p(C).

µα and µβ can be calculated recursively:

µα(xn) =
∑
xn−1

ψn−1,n(xn−1, xn)µα(xn−1)

µβ(xn) =
∑
xn+1

ψn,n+1(xn, xn+1)µβ(xn+1)

With our potentials this yields:

• µα(A) =

(
1
1

)
(initialization, optional),

• µα(B) =

(∑
A µα(A)ψA,B(A, 0)∑
A µα(A)ψA,B(A, 1)

)
=

(
1× 9 + 1× 1
1× 1 + 1× 9

)
=

(
10
10

)
• µα(C) =

(∑
B µα(B)ψB,C(B, 0)∑
B µα(B)ψB,C(B, 1)

)
=

(
10× 9 + 10× 1
10× 1 + 10× 9

)
=

(
100
100

)
• µα(D) =

(∑
C µα(C)ψC,D(C, 0)∑
C µα(C)ψC,D(C, 1)

)
=

(
100× 9 + 100× 1
100× 1 + 100× 9

)
=

(
1000
1000

)
• µβ(D) =

(
1
1

)
(initialization, optional),

7

• µβ(C) =

(∑
D µβ(D)ψC,D(0, D)∑
D µβ(D)ψC,D(1, D)

)
=

(
1× 9 + 1× 1
1× 1 + 1× 9

)
=

(
10
10

)
• µβ(B) =

(∑
C µβ(C)ψB,C(0, C)∑
C µβ(C)ψB,C(1, C)

)
=

(
10× 9 + 10× 1
10× 1 + 10× 9

)
=

(
100
100

)
• µβ(A) =

(∑
B µβ(B)ψA,B(0, B)∑
B µβ(B)ψA,B(1, B)

)
=

(
100× 9 + 100× 1
100× 1 + 100× 9

)
=

(
1000
1000

)
Then we compute the normalization factor Z at any point, for example B:

Z =
∑
B

µα(B).µβ(B) = 2000

Finally we can compute the marginal distributions requested:

p(A) =
1

Z
.µα(A).µβ(A) =

1

2000

(
1× 1000
1× 1000

)
=

(
0.5
0.5

)

p(C) =
1

Z
.µα(C).µβ(C) =

1

2000

(
100× 10
100× 10

)
=

(
0.5
0.5

)
The assumptions were only that neighboring nodes should be equal. The marginal
on A and C both say that we have no idea on their value. That was to be expected.

d) Now, we observe that D is 1, recompute the distributions over A and C: p(A | [D =
1]) and p(C | [D = 1]).

We've learned that we could compute marginal distributions by decomposing the
inference into messages to be passed between nodes.

How can we adapt this mecanism to observations?

If the chain contained only C and D, we would have:

p(C | [D = 1]) =
1

Z ′

(
ψC,D(0, 1)
ψC,D(1, 1)

)
This can be written in the same message passing form:

p(C | [D = 1]) =
1

Z ′

(
1
1

)
.

(∑
D µ

′
β(D)ψC,D(0, D)∑

D µ
′
β(D)ψC,D(1, D)

)

with µ′
β(D) =

(
0
1

)
.

Actually, you just have to replace the µ∗(X) with a Dirac in order to account for
an observation of the value of X (and recompute the normalization factor):

• µα(A) =

(
1
1

)
,

8

• µα(B) =

(∑
A µα(A)ψA,B(A, 0)∑
A µα(A)ψA,B(A, 1)

)
=

(
1× 9 + 1× 1
1× 1 + 1× 9

)
=

(
10
10

)
• µα(C) =

(∑
B µα(B)ψB,C(B, 0)∑
B µα(B)ψB,C(B, 1)

)
=

(
10× 9 + 10× 1
10× 1 + 10× 9

)
=

(
100
100

)
• µα(D) =

(∑
C µα(C)ψC,D(C, 0)∑
C µα(C)ψC,D(C, 1)

)
=

(
100× 9 + 100× 1
100× 1 + 100× 9

)
=

(
1000
1000

)
• µ′

β(D) =

(
0
1

)
(observation),

• µ′
β(C) =

(∑
D µ

′
β(D)ψC,D(0, D)∑

D µ
′
β(D)ψC,D(1, D)

)
=

(
0× 9 + 1× 1
1× 1 + 0× 9

)
=

(
1
9

)
• µ′

β(B) =

(∑
C µ

′
β(C)ψB,C(0, C)∑

C µ
′
β(C)ψB,C(1, C)

)
=

(
1× 9 + 9× 1
1× 1 + 9× 9

)
=

(
18
82

)
• µ′

β(A) =

(∑
B µ

′
β(B)ψA,B(0, B)∑

B µ
′
β(B)ψA,B(1, B)

)
=

(
18× 9 + 82× 1
18× 1 + 82× 9

)
=

(
244
756

)
As above, we can also compute Z ′ = 1000 and then:

p(A | [D = 1]) =
1

Z ′ .µα(A).µ
′
β(A) =

1

1000

(
1× 244
1× 756

)
=

(
0.244
0.756

)

p(C | [D = 1]) =
1

Z ′ .µα(C).µ
′
β(C) =

1

1000

(
100× 1
100× 9

)
=

(
0.1
0.9

)
Now, we know that node D equals 1 and we see it has become more probable for
A and C to be equal to 1 (the more for C which is nearer D than A). At least the
result makes sense.

e) Compute p(C | [A = 0], [D = 1]).

With the same way, we can recompute µ′
α (which is symmetric to µβ):

• µ′
α(A) =

(
1
0

)
,

• µ′
α(B) =

(∑
A µ

′
α(A)ψA,B(A, 0)∑

A µ
′
α(A)ψA,B(A, 1)

)
=

(
1× 9 + 0× 1
1× 1 + 0× 9

)
=

(
9
1

)
• µ′

α(C) =

(∑
B µ

′
α(B)ψB,C(B, 0)∑

B µ
′
α(B)ψB,C(B, 1)

)
=

(
9× 9 + 1× 1
9× 1 + 1× 9

)
=

(
82
18

)
• µ′

α(D) =

(∑
C µ

′
α(C)ψC,D(C, 0)∑

C µ
′
α(C)ψC,D(C, 1)

)
=

(
82× 9 + 18× 1
82× 1 + 18× 9

)
=

(
756
244

)
Now Z ′′ = 244 and:

p(C | [D = 1]) =
1

Z ′′ .µ
′
α(C).µ

′
β(C) =

1

244

(
82× 1
18× 9

)
≈

(
0.336
0.664

)
9

It would be the reverse for B:

(
0.664
0.336

)
. It is not exactly 2

3
. Actually, with a longer

chain, both µ′
α and µ′

β would (exponentially) converge to uniforms as we consider
node further from their origin. Therefore for a long chain, the probability will come

from

(
100%
0%

)
to rest at the uniform

(
50%
50%

)
before setting to

(
0%
100%

)
. In

order to �straighten� the values, we could lower the probability of being di�erent
from neighboring nodes.

Note that the known nodes are at the boundary of our chain. If it was not the
case, the d-separation property would have allowed us to split the chain in two
independent subchains having both a copy of the observed variable as the new
boundary.

The next exercise class will take place on May 27th, 2016.

For downloads of slides and of homework assignments and for further information on the
course see

https://vision.in.tum.de/teaching/ss2016/mlcv16

10

