TU MUNCHEN

FAKULTAT FUR INFORMATIK
PD DRr. RuDOLPH TRIEBEL
JOHN CHIOTELLIS

Machine Learning for Robotics and Computer Vision
Summer term 2016

Homework Assignment 3
Topic 1: Neural Networks and Deep Learning
May 27, 2016

Exercise 1: Back Propagation

e Suppose we modify a single neuron in a feedforward network so that the output from the
neuron is given by f(zj w;z; +b), where f is some function other than the sigmoid.
How should we modify the backpropagation algorithm (from chapter 2 of the above
reading) in this case?

Derivative of the activation function f(-) at the corresponding neuron should be de-
rived. During back propagation, the error should be back-propagated with f’ for the
corresponding neuron.

e Compute the gradient of the cost function C' respect to w5 (2<) given the following

ows
network:

C = Z?Zl(ti — a;)* where t; is the target value for the respective output neuron o;
and a; is the output of the neuron o;. Input/output of hq,hs, 01,0, is computed as
2z = Y. wj - a; + by, af = o(z}) where o(-) is any activation function.

oC

Jun —2(t1 —a) - 0'(2)) - a1 (1)
oC ,

Dwn —2(t; —a?) o (wg)a} + wray + bg) -aj

Exercise 2: Convolutional Layer Arithmetic

Consider a very simple convolutional neural network that just consists of one convolutional

layer.

It has the following parameters:

number of kernels: num = 64

e size of kernels: k=3 x 5

e stride: s =2

padding: p =1

Assume, the input to this layer is an a batch of RGB images. There are 10 images in one
batch and the images have a dimension of 123 x 81.
In general, blobs have the canonical shape N x C x H x W.

a)

What is the shape of the input blob to the convolutional layer? Hint: it's a tensor with
four axes.

The input blob will have the shape 10 x 3 x 81 x 123.

What is the shape of the output blob of the convolutional layer?

In order to find the output blob shape, one has to consider what happens during a
convolution. If there is a non-zero padding, zeros will get virtually added at the boundary
of the input. So the input size increases by 2 x p where p is the padding size. Every time
a kernel gets multiplied with pixels, one number for the activation map is computed.
Thus, the number of times that you can "apply” a kernel along the height/width of the
input will give you the dimensions of the output. Putting all this together will give you

the following formula:

2xp—k
s_tF2xp-k
S

where 7 is the output height or width, respectively. & is the kernel height or width and
s is the stride. That means that the output blob will have the shape
10 x 64 x 40 x 62

Topic 2: Hidden Markov Models

Exercise 3: Viterbi algorithm

We play again with our robot from the first homework assignment. As we mentioned back
then the robot has a camera with an observation model that looks as follows:

Actual color
Sensed color R1G B
R 0.80.1]0.1
G 0.1106]0.2
B 0.1]03]07

This time we put the robot in a room where the floor looks like this:

X
1 2 3
1
> 2
3

a) What is the state space? What is the observation space? Draw the trellis diagram.

The state is the position of the robot. We have a discrete state space of 9 squares.
Each state is a pair (x,y), so z; € {(1,1),(1,2)...,(3,3)}.

The observation space is also discrete and it consists of the 3 colors the robot may
observe, so z; € {R, G, B}. The trellis diagram would look like this:

il

(2.2)

(2:3)

]

(3.1)

]

tl tQ tT

b) Assume the robot can only move vertically and horizontally. We let the robot move
randomly. If the attempted move leads outside of the bounds of the room the robot
stays at its current position. Compute the state transition matrix.

The robot can only move vertically or horizontally, so there are four possible moves
(up, down, left, right). Since the robot moves randomly, each of these has probability
Pmove = 0.25. For all states except the one in the central square, there are moves that
lead out of the bounds of the room. Then the robot stays at its current position, so the
probability for that move is assigned to the transition to the self-state. The transition
matrix looks as follows:

.) 12| 13)] 21 (22)] (23)] 3.1) | (3.2) | (3.3)
(1,1) 0.50 0.25 0.00 0.25 0.00 0.00 0.00 0.00 0.00
(1,2) 0.25 0.25 0.25 0.00 0.25 0.00 0.00 0.00 0.00
(1,3) 0.00 | 0.25 0.50 | 0.00 0.00 0.25 0.00 0.00 0.00
(2,1) 0.25 0.00 0.00 | 0.25 0.25 0.00 0.25 0.00 0.00
(2,2) 0.00 | 0.25 0.00 | 0.25 0.00 0.25 0.00 0.25 0.00
(2,3) 0.00 | 0.00 0.25 0.00 0.25 0.25 0.00 0.00 0.25
(3,1) 0.00 0.00 0.00 0.25 0.00 0.00 0.50 0.25 0.00
(3,2) 0.00 0.00 0.00 0.00 0.25 0.00 0.25 0.25 0.25
(3,3) 0.00 | 0.00 0.00 | 0.00 0.00 0.25 0.00 0.25 0.50

c) After 3 time steps, what is most likely the path that the robot followed if the camera
reads {z; = R, 23 =G, 23 = G } 7 Assume the robot’s initial position is unknown.

We want to use the Viterbi algorithm to estimate the most likely sequence of squares
the robot followed. To do that we need to compute the transition matrix A (previous
question), the initial state probabilities m; and the observation model p(z;|x;). The
Vie{l,...,9}.
The robot's observation model is almost given by the table. We just have to replace the
actual color with each state the robot can be at. Then we obtain p(z;|z;):

robot’s initial position is unknown, therefore we have m; = 1

S 1) @3) [(21] (22) [(23) | B1) | (3.2) | (33)
R 0.1 0.8 0.1 0.8 0.1 0.1 0.1 0.1 0.8
G 0.6 0.1 0.2 0.1 0.2 0.6 0.2 0.6 0.1
B 0.3 0.1 0.7 0.1 0.7 0.3 0.7 0.3 0.1

We initialize with §(zo) = p(z0)p(20|z0). We know p(xy) = 7 and zy = R, so we have

(5(33'0):

S @ @) | @) | 2y | 22) | (23) | 31 | B2) | (33)
0

R 0.0111 | 0.0889 | 0.0111 | 0.0889 | 0.0111 | 0.0111 | 0.0111 | 0.0111 | 0.0889
Now we look at the second observation: z; = G. For each state we compute 0(z1):

6(z1) = p(z1]z1) I%%X{5(x0)p(x1|x0)}

SO @) @) | @) | 2y | 22)] (23 31 | B2 | (33)
1

G 0.0133 | 0.0022 | 0.0044 | 0.0022 | 0.0044 | 0.0133 | 0.0044 | 0.0133 | 0.0044

And for the last observation §(x2):

2 2@ | 12| 13) | (1)

(2,2)

(2,3)

(3.1)

(3.2)

(3.3)

G 0.0040 | 0.0003 | 0.0007 | 0.0003

0.0007

0.0020

0.0007

0.0020

0.0003

In this last step we see that state z* = (1,1) is the most probable final state. By
backtracking we see that in the first time step there are three equally probable states:
(1,2), (2,1) and (3,3). All of them make sense as they are red squares (first observation)

and we don't have any other information.

In the second step there are again three equally probable states: (1,1), (2,3) and (3,2).

The paths that lead to these states are:

(1,2), (1,1)
(2,1), (1,1)
(3.3), (2,3)
(3,3), (3.2)

In the last step state (1,1) is most probable because there are 2 paths that can lead to
it. In contrast there is one path that leads to (2,3) or (3,2) so the probability for each
is exactly half of the probability for (1,1). Therefore the most likely path is

(1,2), (1,1), (1,1) or

(2,1), (1,1), (1,1)

