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Exercise 1: Adaboost

See code

Exercise 2: Expectation-Maximization for GMM
In the standard EM algorithm, we first define the responsibilities v as
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a) Find the optimal means, covariances and mixing coefficients that maximize the data
likelihood. How can we interpret the results?
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We want to maximize the data likelihood, so as usual we minimize the negative
log-likelihood:
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This time we minimize 3 times independently with respect to the means, the co-
variances and the mixture coefficients:
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In the following, to avoid confusion of sums and covariances, we denote covariance
Y as Cg. To simplify some expressions, let us agree on the following notation:
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Thus, we have:
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Solving for the means:
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Setting — 2% = 0 gives us:
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Solving for the covariances:

0LL _ Z 1 82k kak exp(—%an) (19)
0(Jk ” Zj Fanj 8Ck
1 (9fk exp(—%an)
20
S N aC, (20)
1 O fr 1 0exp(—%an)
_ _Z 21

S L ((—%fko;) x5 D) + 5 i x5 Dus) Oy — ) — uwTOk‘l)

j T Nnj
(22)
1 1 1 —1 ~1 T -1
= (—5) ; mﬁkfk eXP(—§an) (Cet = Ot (wn — ) (n — ) O )
(23)
1 _
= (—5) > vk (Ot = O (@n — ) (i — 1) "C) (24)
(25)
Here, we used the derivative of the determinant as follows:
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Solving for the mixture coefficients: Here we must take into account that ), m, = 1.
We enforce this constraint with a Lagrange multiplier. Our objective then becomes:
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where \ < 0.

Deriving w.r.t. m, we get

Setting equal to zero and solving for A\, we get
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Now we can plug this back to the objective and actually solve for my:
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We can interpret these results as weighted averages of means and covariances, the
weights corresponding to the responsibilities 7,,. The mixture coefficients m; are
simply the ratio of data points explained by each component.



b) Define the complete-data-log-likelihood. What is the difference to the standard
log-likelihood?

Assuming we observe not only the data but also the binary latent variables Z we
define the complete data likelihood as:

p(X, Z|m, 11, C) = [ [ p(zalm)p(an] 20, 1, C) (45)
where  p(z,|m) =[[, 7% and  p(z,|2,, 1, C) = [, N(zp| i, C)* .
Remember that )", 2, = 1.

Since now we only have products, we can more easily compute the logarithm:
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Of course in practice, the latent variables are not known, so we maximize the ex-
pectation:
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where we know that E[z.x] = Y-

The theory says that the log-marginal is also maximized implicitly!

Exercise 3: K-Means and EM

d) As EM estimates covariances, the data distribution of each component can be approx-
imated more precisely. Therefore on average it has lower errors. However, EM needs
more iterations to converge to a local minimum and each iteration is more expensive. In
contrast to K-means, where we only estimate means, in EM we have to estimate means,
covariances and mixture coefficients. The runtime can be reduced by warm-starting EM
with the means found by K-means.



