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Exercise 1: Constructing kernels

During this solution we assume the feature spaces of k1 and k2 to have finite dimensions.
Thus they can be written as k1(x1, x2) = φ1(x1)

Tφ1(x2), k2(x1, x2) = φ2(x1)
Tφ2(x2),

where φ1(x) ∈ Rn1 , φ2(x) ∈ Rn2 . Note however that in general feature spaces can be
infinite dimensional (e.g. φ(x) ∈ l2(R), see 4.). We now have to define new kernels via a
scalarproduct k(x1, x2) = 〈φ(x1), φ(x2)〉

a) k(x1, x2) = k1(x1, x2) + k2(x1, x2)

To warm up:

φ(x) =

(
φ1(x)
φ2(x)

)
∈ Rn1+n2

b) k(x1, x2) = k1(x1, x2)k2(x1, x2)

Note that the matrix-products do not commute, so it is a bit of work:

k(x1, x2) = φ1(x1)
Tφ1(x2)φ2(x1)

Tφ2(x2)

= (
∑
i

(φ1(x1))i(φ1(x2))i)(
∑
j

(φ2(x1))j(φ2(x2))j)

=
∑
i

∑
j

(φ1(x1))i(φ1(x2))i(φ2(x1))j(φ2(x2))j

=
∑
i

∑
j︸ ︷︷ ︸∑

k

(φ1(x1))i(φ2(x1))j︸ ︷︷ ︸
φk(x1)

(φ1(x2))i(φ2(x2))j︸ ︷︷ ︸
φk(x2)

⇒ φ(x) =



(φ1(x))1(φ2(x))1
...

(φ1(x))1(φ2(x))n2

(φ1(x))2(φ2(x))1
...

(φ1(x))n1(φ2(x))n2


∈ Rn1·n2

c) k(x1, x2) = f(x1)k1(x1, x2)f(x2)

φ(x) = f(x)φ1(x)
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d) k(x, y) = exp(k1(x, y))

Again we write the scalarproduct as a sum:

exp((φ1(x))Tφ(y)) = exp(
∑

(φ1(x))i(φ1(y))i)

=
∏

exp((φ1(x))i(φ1(y))i)

Since we already know that the product of kernels is again a kernel it remains to show,
that exp((φ(x))i(φ(y))i) is a kernel for a fixed index i. In the following we will omit
i and imagine φ1 to be a scalar-valued function. From the Taylor-expansion of the
exponential function, we know that

exp(φ1(x))(φ1(y)) =
∞∑
k=0

1

k!
(φ1(x))k(φ1(y))k

This is an inner product in l2(R) with

φ(x) =



φ1(x)
1√
2
φ1(x)2

1√
6
φ1(x)3

...
1√
k!
φ1(x)k

...


e) k(x1, x2) = xT1Ax2

Since A is symmetric positive-definite, it admits a Cholesky decomposition A = LLT .
Therefore, we have xT1Ax2 = xT1LL

Tx2 = (LTx1)
T (LTx2). So φ(x) = LTx.

Exercise 2: Polynomial kernel

a) Show (by induction) that kd(xi, xj) = (xTi xj)
d is a kernel for every d ≥ 1.

d = 1: φ(x) = x. Induction step: Exercise 1 a, 1b.

b) Find φd(x) such that kd(xi, xj) = φd(xi)
Tφd(xj).

Consider first d = 2:

(xTi xj)
2 = (xi1xj1 + xi2xj2)

2

= x2i1x
2
j1 + 2xi1xj1xi2xj2 + x2i2x

2
j2

φ(x) =
(
x21
√

2x1x2 x22
)T

For larger d the coefficients can be obtained by using the Binomial theorem/Pascal’s
triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
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c) Find φ̃2(x) for k̃2(x, y) = (xTy + d)2 (d > 0).

We can easily construct the kernel using the properties we proved in exercise 1.

i) xTy = φ(x)φ(y) is a valid kernel

ii) d =
√
d
√
d is a valid kernel

iii) xTy + d We proved that a sum of kernels is also a kernel

iv) Finally, we proved that the product of two kernels is also a kernel

Exercise 3: Feature Spaces

Consider a dataset with a single feature x ∈ R and labels y ∈ {+1,−1}. Data points
−3,−2, 3 have label +1 and data points −1, 0, 1 have label −1.

a) Is this dataset linearly separable? Why?

No, the dataset is not linearly separable. This becomes obvious once we plot the data
points. There is no single line that can completely separate the two classes.
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b) Find a feature map φ(x) ∈ R2 so that the dataset is linearly separable.
(Drawing the data helps.)

We can choose a feature map φ(x) = (x x2)T ∈ R2 so that the dataset becomes lin-
early separable. Now we can draw a line, actually infinitely many lines, that separate
the two classes.
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c) Considering the determinant of a 2 × 2 Gram matrix show that a positive definite
kernel satisfies the Cauchy-Schwartz inequality.

The 2 × 2 Gram matrix is defined as

K =

(
k(x1, x1) k(x1, x2)
k(x2, x1) k(x2, x2)

)
=

with
k(xi, xj) = φ(xi)

Tφ(xj)

. Since the kernel is positive definite, all eigenvalues ofK must be positive and therefore
the determinant too. This means that

det(K) = k(x1, x1)k(x2, x2)− k(x1, x2)k(x2, x1)

= φ(x1)
Tφ(x1)φ(x2)

Tφ(x2)− φ(x1)
Tφ(x2)φ(x2)

Tφ(x1)

= 〈φ(x1), φ(x1)〉〈φ(x2), φ(x2)〉 − |〈φ(x1), φ(x2)〉|2 > 0

⇒ |〈φ(x1), φ(x2)〉|2 < 〈φ(x1), φ(x1)〉〈φ(x2), φ(x2)〉
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Topic 2: Gaussian Processes

Exercise 4: Gaussian Processes Regression

Consider a GP regression model in which the kernel function is defined in terms of a
fixed set of nonlinear basis functions. Show that the predictive distribution is identical to
the one of the Bayesian linear regression model (see Lecture and Homework Assignment 2).

Hint 1: Both models have Gaussian predictive distributions.
Hint 2: Make use of:

(I + AB)−1A = A(I +BA)−1

and the Woodburry identity:

(A+BD−1C)−1 = A−1 − A−1B(D + CA−1B)−1CA−1

Both the Gaussian process and the linear regression model give rise to Gaussian pre-
dictive distributions p(tN+1|xN+1) so we simply need to show that these have the same
mean and variance.
To do this we make use of the prior over the weights for linear regression:

p(w) = N(w|0, σ2
wI) (1)

which leads to a kernel function defined in terms of the basis functions:

k(xi, xj) = σ2
wφ(xi)

Tφ(xj) (2)

.
In bayesian linear regression, we assumed Gaussian noise in the data such that

p(tn|yn) = N(tn|yn, σ2
n) (3)

Therefore the elements of the covariance matrix CN take the form

C(xi, xj) = k(xi, xj) + σ2
nδij (4)

where δij is the Kronecker delta.
In matrix notation this is equal to CN = σ2

wΦΦT + σ2
nIN where Φ is the design matrix

with Φnk = φk(xn).
We know, a Gaussian process is fully defined by mean and covariance:

m(xN+1) = kT∗ C
−1
N t (5)

σ2(xN+1) = (k∗∗ + σ2
n)− kT∗ C−1N k∗ (6)

.
Combining these results, we get a mean for the predictive distribution

mN+1 = σ2
wφ

T
N+1Φ

T (σ2
wΦΦT + σ2

nIN)−1t (7)
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.
Now we can use the first hint:

ΦT (σ2
wΦΦT + σ2

nIN)−1 = ΦT (σ2
n(σ−2n σ2

wΦΦT + IN))−1

= ΦTσ−2n (σ−2n σ2
wΦΦT + IN)−1

= σ−2n (σ−2n σ2
wΦTΦ + IM)−1ΦT

= σ−2n σ−2w (σ−2n ΦTΦ + σ−2w IM)−1ΦT

= σ−2n σ−2w SNΦT

Thus the mean becomes
mN+1 = σ−2n φTN+1SNΦT t (8)

which is exactly the mean of the predictive distribution in bayesian linear regression.
We do the same for the variance:

σ2
N+1(xN+1) = σ2

wφ(xN+1)
Tφ(xN+1) + σ2

n − σ4
wφ(xN+1)

TΦT (σ2
wΦΦT + σ2

nIN)−1Φφ(xN+1)

= σ2
n + φ(xN+1)

T (σ2
wIM − σ4

w(σ2
wΦΦT + σ2

nIN)−1Φ)φ(xN+1)

.
Now we set A = σ−2IM , B = ΦT , C = Φ, D = σ2

nIN and apply the Woodburry identity:

σ2
wIM − σ4

w(σ2
wΦΦT + σ2

nIN)−1Φ = (σ−2w IM + σ−2n ΦTΦ)−1 = SN (9)

Therefore, we have
σ2
N+1 = σ2

n + φ(xN+1)
TSNφ(xN+1) (10)

Exercise 5: Gaussian Processes Classification (Programming)

See code. Gaussian processes are more accurate than boosting methods, as they inherently
estimate a confidence interval for their predictions (variance). On the other hand, boosting
methods are easier to implement and much faster to train which makes them an appealing
choice when we need to deal with large datasets.
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