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Exercise 1: Particle Filter

a) What kind of spaces can we explore with a particle filter?

With particle filters we can explore continuous state spaces.

b) What kind of distributions can we approximate with a particle filter?

Particle filter is non-parametric, meaning we can approximate arbitrary distributions
(Gaussian and non-Gaussian). Given enough particles we can approximate any func-
tion.

c) In a Monte Carlo localization problem what do the particles and the particle weights
correspond to?

The particles themselves correspond to the motion model as they represent the state
after motion with noise. The particle weights are computed according to the measure-
ment model so they represent the likelihood of a measurement.

d) Programming : Implement a particle filter for global localization.
See code.

Exercise 2: Gibbs sampling

Show that the Gibbs sampling algorithm satisfies detailed balance:

p∗(z)T (z, z′) = p∗(z′)T (z′, z)

This follows from the fact that in Gibbs sampling, we sample a single variable, zk at
each time, while all other variables, {zi}i 6=k , remain unchanged. Thus, {z′i}i 6=k = {zi}i 6=k.
We denote as T (z, z′) the transition probability from z to z′ and we get

p∗(z)T (z, z′) = p∗(zk, {zi}i 6=k)p∗(z′k|{zi}i 6=k)
= p∗(zk|{zi}i 6=k)p∗({zi}i 6=k)p∗(z′k|{zi}i 6=k)
= p∗(zk|{z′i}i 6=k)p∗({z′i}i 6=k)p∗(z′k|{z′i}i 6=k)
= p∗(zk|{z′i}i 6=k)p∗(z′k, {z′i}i 6=k)
= T (z′, z)p∗(z′),
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where we have used the product rule together with T (z, z′) = p∗(z′k|{zi}i 6=k).

Exercise 3: Kullback-Leibler divergence

a) What does the KL divergence describe? Is it symmetric? Why?

The Kullback-Leibler divergence is a measure of (dis)similarity between probability
distributions. It is the amount of information lost when a distribution q is used to
approximate a distribution p. It is minimized (zero) when the two distributions are
identical. It is not symmetric. One can see that by the definition:

KL(p||q) =

∫
p(x) log

p(x)

q(x)
dx

=

∫
p(x) log p(x)dx−

∫
p(x) log q(x)

KL(p||q)−KL(q||p) =

∫
p(x) log{p(x)

q(x)
}dx−

∫
q(x) log{q(x)

p(x)
}dx

=

∫
p(x) log{p(x)

q(x)
}dx+

∫
q(x) log{p(x)

q(x)
}dx

=

∫
log{p(x)

q(x)
}(p(x) + q(x))dx

which generally is non-negative, does not have to be zero.

b) Compute the KL-divergence of two univariate normal distributions.
What if they have the same mean? What if they have the same variance?

Let us define p1(x) = N(x|µ1, σ1) and p2(x) = N(x|µ2, σ2). We then have

KL(p1||p2) =

∫
p1(x) log{p1(x)

p2(x)
}dx

First let us simplify the fraction

p1(x)

p2(x)
=

1√
2πσ2

1
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2σ2

1
)

1√
2πσ2

2

exp(− (x−µ2)2
2σ2

2
)

=
σ2
σ1

exp(− (x−µ1)2
2σ2

1
)

exp(− (x−µ2)2
2σ2

2
)

=
σ2
σ1

exp(−(x− µ1)
2

2σ2
1

+
(x− µ2)

2

2σ2
2

)

Taking the logarithm of this gives us

log(
p1(x)

p2(x)
) = log(

σ2
σ1

) +

(
(x− µ2)

2

2σ2
2

− (x− µ1)
2

2σ2
1

)
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Now plugging this in the KL-divergence definition we get

KL(p1||p2) =

∫
p1(x) log(

σ2
σ1

)dx+

∫
p1(x)

(
(x− µ2)

2

2σ2
2

− (x− µ1)
2

2σ2
1

)
dx

= log(
σ2
σ1

)

∫
p1(x)dx+

∫
p1(x)

(x− µ2)
2

2σ2
2

dx−
∫
p1(x)

(x− µ1)
2

2σ2
1

dx

= log(
σ2
σ1

) +
1

2σ2
2

∫
p1(x)(x− µ2)

2dx− 1

2σ2
1

∫
p1(x)(x− µ1)

2dx

= log(
σ2
σ1

) +
1

2σ2
2

∫
p1(x)(x− µ1 + µ1 − µ2)

2dx− σ2
1

2σ2
1

= log(
σ2
σ1

) +
1

2σ2
2

(∫
p1(x)(x− µ1)

2dx+ 2

∫
p1(x)(x− µ1)(µ1 − µ2)dx +

∫
p1(x)(µ1 − µ2)

2dx

)
− 1

2

= log(
σ2
σ1

) +
1

2σ2
2

(
σ2
1 + 2(µ1 − µ2)

∫
p1(x)(x− µ1)dx+ (µ1 − µ2)

2

∫
p1(x)dx

)
− 1

2

= log(
σ2
σ1

) +
1

2σ2
2

(
σ2
1 + (µ1 − µ2)

2
)
− 1

2

If two distributions only differ in their mean values (σ1 = σ2) then the KL-divergence
is proportional to the square of their means difference,

KL(p||q) =
(µ1 − µ2)

2

2σ2
2

.

If they have equal mean but different variances (µ1 = µ2) then the KL-divergence is a
function of the ratio of their variances:

KL(p||q) = log(
σ2
σ1

) +
σ2
1

2σ2
2

− 1

2
=

σ2
1

2σ2
2

− log(
σ1
σ2

)− 1

2

c) Consider a factorized variational distribution q(Z). By using the technique of Lagrange
multipliers, verify that minimization of KL(p||q) with respect to one of the factors
qi(Zi) keeping all other factors fixed, leads to the solution:

q∗j (Zj) =

∫
p(Z)

∏
i 6=j

dZi = p(Zj)
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KL(p||q) =

∫
p(Z) ln

p(Z)

q(Z)
dZ

=

∫
p(Z) ln p(Z)dZ −

∫
p(Z) ln q(Z)dZ

=

∫
p(Z) ln p(Z)dZ −

∫
p(Z) ln

∏
i

qi(Zi)dZ

= −
∫
p(Z)

M∑
i=1

ln qi(Zi)dZ + const.

= −
∫

(p(Z) ln qj(Zj) + p(Z)
∑
i 6=j

ln qi(Zi))dZ + const.

= −
∫
p(Z) ln qj(Zj)dZ + const.

= −
∫

ln qj(Zj)

(∫
p(Z)

∏
i 6=j

dZi

)
dZj + const.

Note that by const. we imply w.r.t. qj. We want to minimize this and at the same
time enforce the constraint ∫

qj(Zj)dZj = 1.

Therefore we add a Lagrange multiplier and our objective function becomes

f(qj(Zj)) = −
∫

ln qj(Zj)

(∫
p(Z)

∏
i 6=j

dZi

)
dZj + λ

(∫
qj(Zj)dZj − 1

)
Taking the derivative w.r.t. qj(Zj) and setting it equal to zero we get

∂f(qj(Zj))

∂qj(Zj)
= −

∫
p(Z)

∏
i 6=j dZi

qj(Zj)
+ λ

!
= 0

We solve for λ

λqj(Zj) =

∫
p(Z)

∏
i 6=j

dZi

λ

∫
qj(Zj)dZj =

∫ (∫
p(Z)

∏
i 6=j

dZi

)
dZj

λ = 1

And thus

qj(Zj) =

∫
p(Z)

∏
i 6=j

dZi
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