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11. Sampling Methods



Sampling Methods

Sampling Methods are widely used in Computer
Science

« as an approximation of a deterministic algorithm
 to represent uncertainty without a parametric model

 to obtain higher computational efficiency with a
small approximation error

Sampling Methods are also often
called Monte Carlo Methods ™

Example: Monte-Carlo Integration o
« Sample in the bounding box
« Compute fraction of inliers
« Multiply fraction with box size 1
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Non-Parametric Representation

Probability distributions (e.g. a robot‘s belief) can
be represeted:

« Parametrically: e.g. using mean and covariance
of a Gaussian

« Non-parametrically: using a set of hypotheses
(samples) drawn from the distribution

Advantage of non-parametric representation:

« No restriction on the type of distribution (e.g. can
be multi-modal, non- Gaussian, etc.)
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Non-Parametric Representation
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The more samples are in an interval, the higher the probability
of that interval

But:
How to draw samples from a function/distribution?
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Sampling from a Distribution
There are several approaches:
« Probability transformation /y i

« Uses inverse of the c.d.f h o0

« Rejection Sampling i
. Importance Sampling 1 ()
. MCMC !
Probability transformation: /|1
. Sample uniformly in [0, I

° TranSf()rm USing h-1 T): HHH >
But:
« Requires calculation of h and its inverse
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Rejection Sampling

1. Simplification: oIf f(z)>c :
e Assume p(z) <1 forall z the sample
e Sample z uniformly otherwise:
 Sample ¢ from |0, 1] the sample
f(x)

= samples

e
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Rejection Sampling
2. General case:

Assume we can evaluate p(z) = Zipﬁ(z) (unnormalized)
e Find g
e Easy to sample from @
e Find k with kq(z) > p(z) (o k()
e Sample from g
e Sample uniformly
from [0,kq(zo) S| e
® Reject if ug > p(zo) o . L.

But: Rejection sampling is inefficient.
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Importance Sampling

®dea: assign an w 1o each
sample

®\\ith the importance weights, we can account for the
“differences between pand q”

’LU(ZI?) = p(:z:)/q(a:) proposal(x)

= target(x)

*p is called ] P
®q is called =
(as before) E
3
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X
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Importance Sampling

® Explanation: The prob. of falling
In an interval A is the under p

® This is equal to the expectation of
the I(x € A)

Bl1(z € A)) = [ p(:)1(z € A)dz %&
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Importance Sampling

® Explanation: The prob. of falling
In an interval A is the under p

® This is equal to the expectation of
the I(x € A)

E,I(z € A) :/p( )I(z € A)dz %\

= /%q(z)l(z c A)dz = E,Jw(z)I(z € A)]
> 0= q(x) >0

Approximation with L
samples drawn from Q:

Requirement: p()
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The Particle Filter

® implementation of Bayes filter
® Represents the belief (posterior) Bel(z,) by a set of

® This representation is
® Can represent distributions that are
® Can model transformations.
Basic principle:
e Set of state hypotheses (“particles™)
e Survival-of-the-fittest

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



The Bayes Filter Algorithm (Rep.)

Bel(x;) =1 p(z: | x¢) /p(:z:t | wg, 2 1)Bel(xy_1)dx, 1

Algorithm Bayes_filter (Bel(z), d)

1. ifd Is a sensor measurement 2 then

2 =0

3 for all x do

4 Bel'(x) + p(z | )Bel(x)

5. n < 1+ Bel'(z)

6 for all z do Bel'(z) « n~'Bel'(x)

/. elseif d is an action u then

8 for all x do Bel'(z) « [ p(x | u, 2")Bel(x’)dz’
9. return Bel'(z)
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Mathematical Description

Set of weighted samples:

2] M|
Ftate hypotheses Importance weights

The samples represent the probabillity distribution:

M , Point mass
p(x) = Z w?’] . 0 [Z](g;/) distribution
—1 L (“Dirac” )
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The Particle Filter Algorithm

Algorithm (X1, us, 2¢) -

1. X, =X =10 Sample from

2. form=1 to M do /’ proposal

3. sample 2™ ~ p(ay | u, 2}7) >

4. o o —_|Compute sample

5 wy < pla | weights

] - ‘J:'l | ( [m] [m]>

o. 1 to M
draw ¢ with prob. Resampling
X, — X, Uz 1/M)

/.

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Localization with Particle Filters

® Fach particle is a potential of the robot
® Proposal distribution is the motion model of the robot

( )

® The observation model is used to compute the
importance weight ( )

Randomized algorithms are usually called Monte Carlo
algorithms, therefore we call this:

Monte-Carlo Localization
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A Simple Example

* The initial belief is a uniform distribution (global
localization).

e This is represented by an (approximately) uniform
sampling of initial particles.
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Sensor Information

p(s)
MNMA_A_AA_AMNJI‘LAA‘AJL s
S

The sensor model p(z: | $£m]) IS used to compute the
new importance weights:

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Robot Motion

| LI 1 N O OONY (VN N (O o 1 (A [ 10U o [

After resampling and applying the motion model
p(z: | ug, ™) the particles are distributed more
densely at three locations.
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Sensor Information
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Again, we set the new importance weights equal to the
sensor model.

w™ — p(z | ™)
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Robot Motion

il‘p(s)
1 1 | | Wl I (I Hin | | | Il | I TN I WL S

Resampling and application of the motion model:
One location of dense particles is left.
The robot is localized.
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A Closer Look at the Algorithm...

Algorithm (Xs, up, 2:)

1. X, =X, =) Sample from

2. for _ 1 tq, do /’ proposal

S Csample 2" ~ p(wy | ug, 7)) >

4. o = —_|Compute sample

w; - p(ze | Ty weights
S. : ml  fm 2
1

draw ¢ with prob. wy Resampling
Xt — Xt U 337[52]
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Sampling from Proposal

This can be done in the following ways:
« Adding the motion vector to each particle directly

(this @T@% ReAeCt oMk ™ )~
« Sampling from the motion model

e.g. for a 2D motion with translation velocity v and

rotation velocity w we have: p(z, | u,, z;™)

. Position
t
U = o Xt = Yt
Wy ' 0 Orientation
t
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Motion Model Sampling (Example)

10 meters
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Computation of Importance Weights

Computation of the sample weights:

« Proposal distribution: g(xﬁm]) — p(a:ffm] ut,xET]l)Bel(xLT]l)
(we sample from that using the motion model)

. Target distribution (new belief): f(z\™) = Bel(z\™)

(we can Wrom that — importance
sampling

« Computation of importance weights:

m F@EMY pCe | 2™ p(™ | e, ™) Bel (2™
e = )y & [m)] [m] [m] =pl2t | z¢)
g(xt ) p(xt ‘ Utth—l)Bel(xt—l)
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probability

Proximity Sensor Models

. How can we obtain the sensor model p(z: | :E,[gm]) ?
. Sensor Calibration:
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Laser sensor
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Sonar sensor
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Resampling

» Given: Set x; of weighted samples.

« Wanted : Random sample, where the probability of
drawing x; Is equal to w;.
« Typically done M times with replacement to generate
new m =17t tofr do
draw 7 with prob. wy
Xy — & U x,[f] X
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Resampling

.Standard n-times sampling - Instead: low variance sampling

results in high variance only samples once
.This requires more particles - Linear time complexity
-O(nlog n) complexity . Easy to implement
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Sample-based Localization (sonar)
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Initial Distribution
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After Ten Ultrasound Scans
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After 65 Ultrasound Scans
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Estimated Path
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Kidnapped Robot Problem

The approach described so far is able to
. track the pose of a mobile robot and to
- globally localize the robot.

« How can we deal with localization errors (i.e
the kidnapped robot problem)?

Idea: Introduce uniform samples at every
resampling step

 This adds new hypotheses
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Summary

« There are mainly 4 different types of sampling
methods: Transformation method, rejections
sampling, importance sampling and MCMC

 Transformation only rarely applicable
« Rejection sampling is often very inefficient

« Importance sampling is used in the particle filter
which can be used for robot localization

« An efficient implementation of the resampling
step Is the low variance sampling
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