

Machine Learning for Applications in Computer Vision

Tree-based Classifiers

Overview

- Decision Stump
- From stumps to trees
 - Growing a tree
 - Pruning a tree
 - Pros and Cons
- From trees to forests
 - Random Forests theory
 - Applications
 - Pros and Cons
- Applications (Learning with trees online)
 - Online learning
 - Online Random Forests
 - Mondrian Forests

Decision Stump

- One level decision tree
- One internal node (root) connected to its terminal nodes (leaves)

- Goal:
 - Find axis aligned hyper plane that minimizes the class. error
- Class. error is always better than random guessing (50%),
 weak classifier

Decision Trees

- Classification and Regression Trees (CART)
- Extension of Decision Stump
- Partition the input space recursively

Define a label for each resulting region of the input

space.

Decision Trees

- Regression: assign mean response to each leaf (piecewise constant surface)
- Classification: store the distribution over class labels in each leaf
 - Inner node:

• Leaf node:

Growing a Tree

- NP-Complete problem (NP: Non-deterministic Polynomial time)
- Solution is locally optimal
- Minimize a cost function to find the best feature and its best threshold on each node
- Split the data on each node based on the chosen feature and the threshold
- Stopping criteria for growing the tree
 - reduction of cost too small?
 - maximum depth is reached?
 - is the distribution in the subtrees homogeneous? (pure dist.)
 - is the number of samples in the subtrees too small?

Growing a Tree

Regression cost:

$$cost(D) = \sum_{i \in D} (y_i - \bar{y})^2 \qquad \bar{y} = \frac{1}{|D|} \sum_{i \in D} y_i$$

- Classification cost:
 - Misclassification rate:
 - Entropy:
 - same as maximizing the information gain
 - Gini Index:
 - expected error rate

$$\frac{1}{|D|} \sum_{i \in D} |y_i \neq \hat{y}|$$

$$H(\hat{P}) = -\sum_{c=1}^{C} \hat{P}_c \log \hat{P}_c$$

$$1 - \sum_{c} \hat{P}_{c}^{2}$$

Pruning a tree

- Growing a tree too large yields overfitting
- Solution: build a full tree and then prune it

Pruning a tree

- Growing a tree too large yields overfitting
- Solution: build a full tree and then prune it

Pros (CART)

- easy to interpret
- can handle mixed discrete and cont. data
- insensitive to monotone transformations
- CART perform automatic variable selection
- relatively robust to outliers
- scale well to large datasets
- can be modified to handle missing inputs

Cons (CART)

- DO NOT predict very accurately
 - due to the greedy training procedure
- Trees are unstable
 - small change in the input might yield a large effect on the tree structure
- Trees are high variance estimators
 - Solution: Random Forests

Random Forests

- Reduce the variance of estimate by
 - Train M trees on different subsets of the data:

$$f(x) = \sum_{m}^{M} \frac{1}{M} f_m(x)$$

- !!! highly correlated predictors
- Solution: Choose data as well as variable (feature) randomly
- Known as Random Forests. RF has a high accuracy and widely used in practical studies.

Random Forests

- Real-Time Object Segmentation with Semantic Texton Forests
 - James Shotton (winner of CVPR 2008 Demo Prize)

https://www.youtube.com/watch?v=oBYnnp-GQqY

Random Forests

 Real Time Head Pose Estimation with Random Regression Forests [Fanelli et al. (CVPR 2011)]

https://www.youtube.com/watch?t=136&v=sxUkGGGtRBU

Random Forests (Pros and Cons)

- very good predictive performance
- fast to train and test
- trees can be trained in parallel
- overfitting is avoided

- Not possible to train incrementally
- Retraining periodically is slow
 - And requires access to past data

Online Learning

- We receive data sequentially (in streams)
- The class sizes may vary significantly
- Application: self-driving cars (e.g. RGB-D sensors)

Online Random Forests

- Online Random Forests [Saffari et. al (ICCV 2009)]
- Applications:
 - Tracking (ORFs vs OnlineAdaBoost)

Interactive image segmentation

Figure 4. Interactive segmentation results using on-line random forests and a Total Variation based segmentation algorithm.

Mondrian Forests

Efficient Online Random Forests

[B. Lakshminarayanan, D.M. Roy and Y.W. Teh (NIPS 2014)]

- store also the range of the data in each dimension
- are independent of the class labels
- trees can grow upwards as well as downwards
- Name inspired by Piet Mondrian:
- "Composition with Red, Yellow, Blue, and Black" 1926
 Gemeentemuseum, Den Haag

Mondrian Forests

- Application to real data "KiTTi benchmark"
 - 3D pointclouds
 - cars, pedestrians,bikes, trucks, etc

The end

Thank you!

Questions?

