

Machine Learning for Applications in Computer Vision

Neural Networks

Perceptron

• The human brain (10¹⁰ cells) is the archetype of neural networks

http://home.agh.edu.pl/~vlsi/Al/intro/

Perceptron

• The human brain (10¹⁰ cells) is the archetype of neural networks

Finds a hyperplane to separate the classes!

Very similar to SVMs

http://home.agh.edu.pl/~vlsi/Al/intro/

Perceptron

• The human brain (10¹⁰ cells) is the archetype of neural networks

Different type of activation functions

Threshold activation (binary classifier)

Different type of activation functions

Sigmoid activation

$$y = \frac{1}{1 + \exp^{-\phi}}$$

More accurate!
Describe the non-linear
characteristics of biological
neurons

Different type of activation functions

Tangent activation

Different type of activation functions

Linear activation

Different type of activation functions

rectified Linear Unit activation

Simple Neural Network

Best reference: <u>neuralnetworksanddeeplearning.com</u>

Simple Neural Network

Best reference: <u>neuralnetworksanddeeplearning.com</u>

Define a cost function

$$C(w,b) \equiv rac{1}{2n} \sum_{x} \|y(x) - a\|^2$$

prediction

Goal: Find global minimum

Define a cost function

$$C(w,b) \equiv rac{1}{2n} \sum_{x} \|y(x) - a\|^2$$

prediction

Goal: Find global minimum

Gradient Descent

Define a cost function

$$C(w,b) \equiv rac{1}{2n} \sum_{x} \|y(x) - a\|^2$$

ground truth

- Minimize the error (derivative of the cost) with gradient descent
 - Gradient descent update rule:

$$w_k o w_k'=w_k-\etarac{\partial C}{\partial w_k}$$
 Learning rate $b_l o b_l'=b_l-\etarac{\partial C}{\partial b_l}$

Define a cost function

St function
$$C(w,b) \equiv rac{1}{2n} \sum_{x}^{ ext{ground truth}} \|y(x) - a\|^2$$

- Propagate the error through layers
 - Take the derivate of the output of the layer w.r.t the input of the layer
 - Apply update rule for the parameters
- Repeat until convergence

Stochastic Gradient Descent

Gradient Descent

- Computing cost and derivative for the entire training set intractable.
- Not easy to incorporate new data in an 'online' setting

Solution: SGD

- Update parameters over a batch of images
- Mini-batch reduces the variance in the parameter update and can lead to more stable convergence
- Use momentum for faster convergence

$$v_k \to v_k' = \mu v_k - \eta \frac{\partial C}{\partial w_k}$$
, $w_k \to w_k' = w_k + v_{k+1}$

http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/

Other Optimisation Methods

- AdaDelta
- AdaGrad
- NAG (Nesterov's Accelerated Gradient)
- RMSProb
- ADAM
 - Less sensitive to hyper-parameter initialisation

Back to Neuron Activations

- Sigmoid:
 - Dying gradients saturated activation
 - Non-zero centered
- Tangent:
 - Dying gradients saturated activation
 - Zero centered
- ReLU:
 - Greatly accelerated convergence
 - No expensive operation
 - •Can be fragile during training: use Leaky-ReLU

MNIST Digit Classification with NN

Lets play around!

cs.stanford.edu/people/karpathy/convnetjs

Quiz

Website

www.onlineted.com

Machine Learning Practical

Convolutional Neural Network in A Netshell

Lingni Ma lingni@in.tum.de

Technische Universität München Computer Vision Group

Summer Semester 2016

Unless otherwise stated, this slide takes most references from Standford lecture cs231n: "convolutional neural networks for visual recognition" (http://cs231n.stanford.edu/). The mathematical details are referenced from C. M. Bishop, "Pattern recognition and machine learning".

Outline

- Overview of convolutional neural network (CNN)
- Building blocks: basic layers of CNN
- Typical CNN architecture
- Training

Applications of CNN

- classification and recognition
- image segmentation
- regression problems: optical flow, depth/normal estimation, loop closure, transformation, reconstruction
- feature extraction, encoding
- unsupervised problem

CNN Major Features

(recall) regular neural networks

- universal approximator
- fully-connected
 - not scale well to large input
 - easily overfit

regular neural network

CNN Major Features

convolutional neural networks

feed-forward architecture, direct acyclic graph (DAG)

$$y_k^{l+1}(\mathbf{w}, \mathbf{x}) = f\left(\sum_{j=1}^{M} w_{kj}^{l+1} g\left(\sum_{i=1}^{D} w_{ji}^{l} x_i + b_j^{l}\right) + b_k^{l+1}\right)$$

- error backpropagation
- ▶ 3D volume of neurons
- small filter, local fully-connected, parameter sharing

regular neural network

convolutional neural network

height

A Toy Example CIFAR-10 classification with CNN

CNN: a direct acyclic graph (DAG) operates on volumes of neurons

Basic CNN Layer Convolution

- a set of learnable filters (or kernels)
- local fully connected: each filter is small in width and height, but go through the full depth of input volume
- parameter sharing: each filter slides along input width and depth
- feature map, output slice of one filter, stack into volume
- layer configuration
 - receptive field (F): filter spatial dimension
 - ▶ depth (D): number of filters
 - padding (P): zero-padding on boundary
 - stride (S): control the overlap of receptive field

Basic CNN Layer Convolution

input volume: $D_1 \times H_1 \times W_1$ conv layer: receptive field F, depth D, padding P, stride S

how many parameters does this layer contain?

$$(F \times F \times D_1 + 1) \times D$$

what is the output volume shape?

$$H_2 = (H_1 + 2P - F)/S + 1$$

 $W_2 = (W_1 + 2P - F)/S + 1$
 $D_2 = D$

spatial resolution perservation

$$S = 1$$
 and $F = 2P + 1$

Basic CNN Layer Activation

- regular element-wise activation
- no hyper-parameter required
- $ightharpoonup ReLU^1 = max(0, y)$
- ▶ PReLU² = $\max(0, y) + \alpha \min(0, y)$

¹ Alex Krizhevsky, Ilya Sutskever and Geoff Hinton, "ImageNet classification with deep convolutional neural networks", NIPS 2012

² He et al. ICCV 2015, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification"

Basic CNN Layer Pooling

- drastically reduce the spatial parameters
- control over-fitting
- operate on each feature map
- common pooling layer specification

$$F = 2, S = 2, P = 0$$
, non-overlapping, most common $F = 3, S = 2, P = 0$, overlap pooling

MAX pooling vs Average pooling

Basic CNN Layer Fully Connected

- contain most of network parameters
- ▶ last layer of CNN compute class score ⇒ act as SVM classifier
- ▶ net surgery: convert FC layer to Conv layer FC layer: K = 4096 operate on $7 \times 7 \times 512$ volume of neuron FC: 4096 inner product $\mathbf{w}^\mathsf{T}\mathbf{x}$, where $\mathbf{w}, \mathbf{x} \in \mathbb{R}^{7 \times 7 \times 512}$ Conv: D = 4096, F = 7, P = 0, S = 1
- practical advantages with Conv layer: efficiency input 224 × 224 image, downsample 32 times before FC. What if input 384 × 384? evaluating 224 × 224 crops of the 384 × 384 image in strides of 32 pixels is identical to forwarding the converted ConvNet one time

Basic CNN Layer Batch Norm / Dropout

- batch normalization¹
 - accelerate training and increase accuracy
 - append after activation

$$y_i = \gamma \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} + \beta, \text{ with } \mu_{\mathcal{B}} = \frac{1}{m} \sum_{i}^{m} x_i, \ \sigma_{\mathcal{B}}^2 = \frac{1}{m} \sum_{i}^{m} (x_i - \mu_{\mathcal{B}})^2$$

- dropout²
 - randomly mask out neuros
 - control over-fitting
 - mostly append to FC layers

¹ loffe et al., "Batch normalization: accelerating deep network training by reducing internal covariate shift", NIPS 2015

²Srivastava et al., "Dropout: a simple way to prevent neural networks from overfitting", JMLR 2014

Loss Function

regression with Euclidean loss

$$E(\mathbf{w}) = \frac{1}{2N} \sum_{i} \|f(\mathbf{w}, x_i) - y_i\|^2$$

classification with hinge loss

$$E(\mathbf{w}) = \frac{1}{N} \sum_{\mathbf{x}_n} \sum_{j \neq k} \max \left(0, y_j(\mathbf{w}, \mathbf{x}_n) - y_k(\mathbf{w}, \mathbf{x}_n) + 1 \right)$$

Loss Function Classification with Cross-Entropy Loss

- cross-entropy $H(p,q) = \sum_{x} -p(x) \log q(x)$
 - minimize KL-divergence between true distribution p(x) and estimated distribution q(x)
- two-class classification (logistic regression)

$$E(\mathbf{w}) = -\frac{1}{N} \sum_{\mathbf{x}_n} \left(p_n \log \sigma \big(y(\mathbf{w}, \mathbf{x}_n) \big) + (1 - p_n) \log (1 - \sigma \big(y(\mathbf{w}, \mathbf{x}_n) \big) \right)$$

- ▶ logistic sigmoid: $\sigma(y) = 1/(1 + \exp(-y))$
- multi-class classification (multiclass logistic regression)

$$E(\mathbf{w}) = -\frac{1}{N} \sum_{\mathbf{x}_n} \log \left(\sigma (y_k(\mathbf{w}, \mathbf{x}_n)) \right)$$

• softmax: $\sigma(y_k) = e^{y_k} / \sum_j e^{y_j}$

Loss Function Regularizer

$$E(\mathbf{w}) = E_{\mathsf{data}}(\mathbf{w}) + \lambda E_{\mathsf{regu}}(\mathbf{w})$$

- regularizer is also known as weight decay
- control over-fitting by penalize parameter values
- $L_1 := \|\mathbf{w}\|_1$, not strictly differetiable
- $ightharpoonup L_2 := \|\mathbf{w}\|_2^2$, differentiable, zero-mean Gaussian prior distribution

Building CNN patterns of layers and filters

Input

$$\begin{bmatrix} \text{Conv} \rightarrow \text{ReLU} \rightarrow (\text{BatchNorm}) \end{bmatrix} \times N \rightarrow \text{Pool} \end{bmatrix} \times M$$

$$\begin{bmatrix} \text{FC} \rightarrow \text{ReLU} \rightarrow (\text{Dropout}) \end{bmatrix} \times K$$

$$\begin{bmatrix} \text{FC} \text{ (score)} \end{bmatrix}$$

- FC (score)
- usually $N \in (0,3), M > 0$
- shape-preserve conv F = 2P + 1, S = 1, downsample with pooling
- better stack small conv filter to obtain large receptive field
 - stack three F=3 filters vs. one F=7 filter
- ► $K \in (0,3)$

Classical CNN Architectures LeNet1

- first successful CNN example
- digit and letters recognition
- 3 Conv, 1 FC, 60K parameters

¹ Yann LeCun et al., "Gradient-based learning applied to document recognition", IEEE proceedings, 1998

Classical CNN Architectures AlexNet¹

- first work to popularize CNN
- ▶ 5 Conv layers, 3 FC layers, 650K neurons, 60M parameters
- first 96 filters learned

Alex Krizhevsky, Ilya Sutskever and Geoff Hinton, "ImageNet classification with deep convolutional neural networks". NIPS 2012

Classical CNN Architectures VGGNet1

- deep: 16 or 19 layers
- ▶ 13 or 16 Conv layers, small filters F = 3, S = 1, P = 1
- 5 max pooling layer, downsample by 32
- ▶ 240K neurons, 138M parameters

¹ Karen Simonyan and Andrew Zisserman, 2014 ICLR, "Very deep convolutional networks for large-scale image recognition"

Classical CNN Architectures

GoogLeNet1

- 22 layers
- inception module: combine convolutional layers

ResNet²

very deep, e.g. 152 layers

Do networks get better simply by stacking more layers?

¹ Christian Szegedy et al, 2015 CVPR, "Going deeper with convolutions"

² He et al, 2015, "Deep Residual Learning for Image Recognition"

Training CNN

data preparation

- mean substraction, normalization
- augmentation

weight initialization

- Gaussain, xavier¹, msra²
- trainsfer learning

optimization algorithm

- SGD
- shuffle input

hyper-parameter

- learning rate policy
- batch size
- ¹ Xavier Glorot et al. "Understanding the difficulty of training deep feedforward neural networks", 2010

² He et al., "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification". ICCV 2015

Training CNN Framework and Packages

Caffe¹

- C++/CUDA, with Python and Matlab bindings
- (+) good for feedforward network (+) finetune (+) easy to start
- ▶ (-) bad at recurrent network (-) poor support for visualization

Torch²

- C and Lua
- used a lot by Facebook, DeepMind

TensorFlow³

- Google
- Python, source code not readable
- not limited for CNN, also good at RNN

¹ http://caffe.berkeleyvision.org/

² https://torch.ch

³ https://www.tensorflow.org/

Question?