Computer Vision II: Multiple View Geometry

Exercise 8: Direct Image Alignment

Robert Maier, Rui Wang mvg-ss16@vision.in.tum.de

June 30, 2016

Direct Image Alignment

- = "Direct Tracking" / "Dense Tracking" / "Dense Visual Odometry"
- = "Lucas-Kanade Tracking on SE(3)"
ref. image

Direct Image Alignment

Robust Odometry Estimation for RGB-D Cameras

Christian Kerl, Jürgen Sturm, Daniel Cremers

Keypoints, Direct, Sparse, Dense

Feature-Based

abstract image to feature observations

Direct

keep full images (no abstraction)

- Sparse: use a small set of selected pixels (keypoints)
- Dense: use all (valid) pixels

Sparse Keypoint-based Visual Odometry

Extract and match keypoints

Determine relative camera pose (R, t) from keypoint matches

Problem with Keypoint-based Methods

Dense Direct Image Alignment

- Known pixel depth -> "simulate" RGB-D image from different view point
- Ideally: warped image = image taken from that pose:

$$
I_{1}(\mathbf{x})=I_{2}\left(\pi\left(\mathbf{T}(\boldsymbol{\xi}) Z(\mathbf{x}) K^{-1} \overline{\mathbf{x}}\right)\right)
$$

- RGB-D: depth available -> find camera motion!
- Motion representation using the SE(3) Lie algebra
- Non-linear least squares optimization

Direct minimization of photometric error

Gauss-Newton

$$
E(\xi)=\sum_{\mathbf{p}_{i} \in \Omega_{\mathrm{ref}}}\left(I_{\mathrm{ref}}\left(\mathbf{p}_{i}\right)-I\left(\omega\left(\mathbf{p}_{i}, D_{\mathrm{ref}}\left(\mathbf{p}_{i}\right), \xi\right)\right)\right)^{2}
$$

- Solved using the Gauss-Newton algorithm using left-multiplicative increments on SE(3):

$$
\begin{aligned}
\xi_{1} \circ \xi_{2}:=\log \left(\exp \left(\widehat{\xi_{1}}\right) \cdot \exp \left(\widehat{\xi_{2}}\right)\right)^{\vee} & \neq \xi_{1}+\xi_{2} \\
& \neq \xi_{2} \circ \xi_{1}
\end{aligned}
$$

- Intuition: iteratively solve for $\nabla E(\xi)=0$ by approximating $\nabla E(\xi)$ linearly (i.e. by approximating $E(\xi)$ quadratically)
- Using coarse-to-fine pyramid approach

Gauss-Newton

$$
E(\xi)=\sum_{\mathbf{p}_{i} \in \Omega_{\mathrm{ref}}} \underbrace{\left(I_{\mathrm{ref}}\left(\mathbf{p}_{i}\right)-I\left(\omega\left(\mathbf{p}_{i}, D_{\mathrm{ref}}\left(\mathbf{p}_{i}\right), \xi\right)\right)\right)^{2}}_{=: r_{i}^{2}(\xi)}
$$

1. „Linearize" \mathbf{r} on Manifold around current pose $\xi^{(n)}$:

$$
\mathbf{r}(\xi) \approx \underbrace{\mathbf{r}\left(\xi^{(k)}\right)}_{\mathbf{r}_{0} \in R^{n}}+\underbrace{\left.\frac{\partial \mathbf{r}\left(\epsilon \circ \xi^{(k)}\right)}{\partial \epsilon}\right|_{\epsilon=0}}_{J_{\mathbf{r}} \in R^{n \times 6}} \cdot \underbrace{\left(\xi \circ\left(\xi^{(k)}\right)^{-1}\right)}_{\delta_{\xi}}
$$

2. Solve for $\nabla E(\xi)=0$

$$
\begin{aligned}
& E(\xi)=\left\|\mathbf{r}_{0}+J_{\mathbf{r}} \cdot \delta_{\xi}\right\|_{2}^{2}=\mathbf{r}_{0}^{T} \mathbf{r}_{0}+2 \delta_{\xi}^{T} J_{\mathbf{r}}^{T} \mathbf{r}_{0}+\delta_{\xi}^{T} J_{\mathbf{r}}^{T} J_{\mathbf{r}} \delta_{\xi} \\
& \nabla E(\xi)=2 J_{\mathbf{r}}^{T} \mathbf{r}_{0}+2 J_{\mathbf{r}}^{T} J_{\mathbf{r}} \delta_{\xi}=0 \quad \Rightarrow \quad \delta_{\xi}=-\left(J_{\mathbf{r}}^{T} J_{\mathbf{r}}\right)^{-1} J_{\mathbf{r}}^{T} \mathbf{r}_{0}
\end{aligned}
$$

3. Apply $\xi^{(k+1)}=\delta_{\xi} \circ \xi^{(k)}$
4. Iterate (until convergence)

Gauss-Newton

$$
E(\xi)=\sum_{\mathbf{p}_{i} \in \Omega_{\mathrm{ref}}} \underbrace{\left(I_{\mathrm{ref}}\left(\mathbf{p}_{i}\right)-I\left(\omega\left(\mathbf{p}_{i}, D_{\mathrm{ref}}\left(\mathbf{p}_{i}\right), \xi\right)\right)\right.}_{=: r_{i}^{2}(\xi)})^{2}
$$

- Jacobian J_{r} : partial derivatives

Requires gradient of residual:

$$
\begin{array}{r}
\left.\frac{\partial r_{i}\left(\epsilon \circ \xi^{(k)}\right)}{\partial \epsilon}\right|_{\epsilon=0}=-\frac{1}{z^{\prime}}\left(\begin{array}{lll}
\nabla I_{x} f_{x} & \left.\nabla I_{y} f_{y}\right)
\end{array}\right)\left(\begin{array}{ccccc}
1 & 0 & -\frac{x^{\prime}}{z^{\prime}} & -\frac{x^{\prime} y^{\prime}}{z^{\prime}} & \left(z^{\prime}+\frac{x^{\prime 2}}{z^{\prime}}\right) \\
0 & 1 & -\frac{z^{\prime}}{z^{\prime}} & -\left(z^{\prime}+\frac{y^{\prime}}{z^{\prime}}\right) & \begin{array}{c}
\frac{x}{2}^{\prime} z^{\prime} \\
z^{\prime}
\end{array} \\
x^{\prime}
\end{array}\right) \\
=1 \times 6 \text { row of } J_{\mathbf{r}}
\end{array}
$$

with

- $\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right):=R_{\xi^{(k)}} K^{-1}\left(\begin{array}{c}d p_{i, x} \\ d p_{i, y} \\ d\end{array}\right)+\mathrm{t}_{\xi^{(k)}}=$ warped point (before projection)
- $f_{x}, f_{y}, K=$ intrinsic camera calibration
- $\nabla I_{x}, \nabla I_{y}=$ image gradients

Coarse-to-Fine

- Adapt size of the neighborhood from coarse to fine

Coarse-to-Fine

- Minimize for down-scaled image (e.g. factor 8, $4,2,1$) and use result as initialization for next finer level
- Elegant formulation: Downscale image and adjust K accordingly
- Downscale by factor of 2 (e.g. 640x480 -> 320x240)
- Camera matrix
$K=\left(\begin{array}{ccc}f_{x} & 0 & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1\end{array}\right) \quad \rightarrow K_{\frac{1}{2}}=\left(\begin{array}{ccc}\frac{f_{x}}{2} & 0 & \frac{c_{x}+0.5}{c_{2}}-0.5 \\ 0 & \frac{f_{y}}{2} & \frac{c_{y}+0.5}{2}-0.5 \\ 0 & 0 & 1\end{array}\right)$
(assuming discrete pixel (x, y) contains continuous value at (x, y))

Final Algorithm

$\xi^{(0)}=0$
$\mathrm{k}=0$
for level = 3 ... 1
compute down-scaled images \& depthmaps (factor $=2^{\text {level }}$) compute down-scaled $\mathrm{K}\left(\right.$ factor $\left.=2^{\text {level }}\right)$
for $i=1$.. 20
compute Jacobian $J_{\mathbf{r}} \in R^{n \times 6}$
compute update δ_{ξ}
apply update $\xi^{(k+1)}=\delta_{\xi} \circ \xi^{(k)}$
k++; maybe break early if δ_{ξ} too small or if residual increased done
done

+ robust weights (e.g. Huber), see iteratively reweighted least squares
+ Levenberg-Marquad (LM) Algorithm

