Chapter 6 Reconstruction from Multiple Views

Multiple View Geometry
Summer 2016

Reconstruction from Multiple Views

Prof. Daniel Cremers

From Two Views to Multiple Views

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View
Reconstruction
Algorithms
Multiple-View
Reconstruction of Lines

Chair for Computer Vision and Pattern Recognition Department of Computer Science Technische Universität München

Overview

(1) From Two Views to Multiple Views
(2) Preimage \& Coimage from Multiple Views
(3) From Preimages to Rank Constraints
(4) Geometric Interpretation
(5) The Multiple-view Matrix
(6) Relation to Epipolar Constraints

7 Multiple-View Reconstruction Algorithms
8 Multiple-View Reconstruction of Lines

Multiple-View Geometry

In this section, we deal with the problem of 3D reconstruction given multiple views of a static scene, either obtained simultaneously, or sequentially from a moving camera.
The key idea is that the three-view scenario allows to obtain more measurements to infer the same number of 3D coordinates. For example, given two views of a single 3D point, we have four measurements (x - and y-coordinate in each view), while the three-view case provides 6 measurements per point correspondence. As a consequence, the estimation of motion and structure will generally be more constrained when reverting to additional views.
The three-view case has traditionally been addressed by the so-called trifocal tensor [Hartley '95, Vieville '93] which generalizes the fundamental matrix. This tensor - as the fundamental matrix - does not depend on the scene structure but rather on the inter-frame camera motion. It captures a trilinear relationship between three views of the same 3D point or line [Liu, Huang '86, Spetsakis, Aloimonos '87].

Trifocal Tensor versus Multiview Matrices

Traditionally the trilinear relations were captured by generalizing the concept of the Fundamental Matrix to that of a Trifocal Tensor. It was developed among others by [Liu and Huang '86], [Spetsakis, Aloimonos '87]. The use of tensors was promoted by [Vieville '93] and [Hartley '95]. Bilinear, trilinear and quadrilinear constraints were formulated in [Triggs '95]. This line of work is summarized in the books:
Faugeras and Luong, "The Geometry of Multiple Views", 2001 and

Hartley and Zisserman, "Multiple View Geometry", 2001, 2003.
In the following, however, we stick with a matrix notation for the multiview scenario. This approach makes use of matrices and rank constraints on these matrices to impose the constraints from multiple views. Such rank constraints were used by many authors, among others in [Triggs '95] and in [Heyden, Åström '97]. This line of work is summarized in the book

Ma, Soatto, Kosecka, Sastry, "An Invitation to 3D Vision", 2004.

Preimage from Multiple Views

A preimage of multiple images of a point or a line is the (largest) set of 3D points that gives rise to the same set of multiple images of the point or the line.

For example, given the two images ℓ_{1} and ℓ_{2} of a line L, the preimage of these two images is the intersection of the planes P_{1} and P_{2}, i.e. exactly the 3D line $L=P_{1} \cap P_{2}$.

In general, the preimage of multiple images of points and lines can be defined by the intersection:

$$
\begin{aligned}
& \text { preimage }\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right)=\text { preimage }\left(\boldsymbol{x}_{1}\right) \cap \cdots \cap \text { preimage }\left(\boldsymbol{x}_{m}\right) \text {, } \\
& \text { preimage }\left(\ell_{1}, \ldots, \ell_{m}\right)=\text { preimage }\left(\ell_{1}\right) \cap \cdots \cap \text { preimage }\left(\ell_{m}\right) .
\end{aligned}
$$

The above definition allows us to compute preimages for any set of image points or lines. The preimage of multiple image lines, for example, can be either an empty set, a point, a line or a plane, depending on whether or not they come from the same line in space.

Preimage and Coimage of Points and Lines

Images of a point p on a line L :

- Preimages P_{1} and P_{2} of the image lines should intersect in the line L.
- Preimages of the two image points \boldsymbol{x}_{1} and \boldsymbol{x}_{2} should intersect in the point p.
- Normals ℓ_{1} and ℓ_{2} define the coimages of the line L.

Preimage and Coimage of Points and Lines

For a moving camera at time t, let $\boldsymbol{x}(t)$ denote the image coordinates of a 3D point \boldsymbol{X} in homogeneous coordinates:

$$
\lambda(t) \boldsymbol{x}(t)=K(t) \Pi_{0} g(t) \boldsymbol{X}
$$

where $\lambda(t)$ denotes the depth of the point, $K(t)$ denotes the intrinsic parameters, Π_{0} the generic projection, and

$$
g(t)=\left(\begin{array}{cc}
R(t) & T(t) \\
0 & 1
\end{array}\right) \in S E(3)
$$

denotes the rigid body motion at time t.
Let us consider a 3D line L in homogeneous coordinates:

$$
L=\left\{\boldsymbol{X} \mid \boldsymbol{X}=\boldsymbol{X}_{0}+\mu \boldsymbol{V}, \mu \in \mathbb{R}\right\} \quad \subset \mathbb{R}^{4}
$$

where $\boldsymbol{X}_{0}=\left[X_{0}, Y_{0}, Z_{0}, 1\right]^{\top} \in \mathbb{R}^{4}$ are the coordinates of the base point p_{0} and $\boldsymbol{V}=\left[V_{1}, V_{2}, V_{3}, 0\right]^{\top} \in \mathbb{R}^{4}$ is a nonzero vector indicating the line direction.

From Two Views to Multiple Views

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View
Reconstruction
Algorithms
Multiple-View
Reconstruction of Lines

Preimage and Coimage of Points and Lines

The preimage of L with respect to the image at time t is a plane P with normal $\ell(t)$, where $P=\operatorname{span}(\hat{\ell})$. The vector $\ell(t)$ is orthogonal to all points $\boldsymbol{x}(t)$ of the line:

$$
\ell(t)^{\top} \boldsymbol{x}(t)=\ell(t)^{\top} K(t) \Pi_{0} g(t) \boldsymbol{X}=0 .
$$

Assume we are given a set of m images at times t_{1}, \ldots, t_{m} where

$$
\lambda_{i}=\lambda\left(t_{i}\right), \boldsymbol{x}_{i}=\boldsymbol{x}\left(t_{i}\right), \ell_{i}=\ell\left(t_{i}\right), \Pi_{i}=K\left(t_{i}\right) \Pi_{0} g\left(t_{i}\right)
$$

With this notation, we can relate the i-th image of a point p to its world coordinates \boldsymbol{X} :

$$
\lambda_{i} \boldsymbol{x}_{i}=\Pi_{i} \boldsymbol{X},
$$

and the i-th coimage of a line L to its world coordinates $\left(\boldsymbol{X}_{0}, \boldsymbol{V}\right)$:

$$
\ell_{i}^{\top} \Pi_{i} \boldsymbol{X}_{0}=\ell_{i}^{\top} \Pi_{i} \boldsymbol{V}=0 .
$$

From Preimages to Rank Constraints

The above equations contain the 3D parameters of points and lines as unknowns. As in the two-view case, we wish to eliminate these unknowns so as to obtain relationships between the 2D projections and the camera parameters.

In the two-view case an elimination of the 3D coordinates lead to the epipolar constraint for the essential matrix E or (in the uncalibrated case) the fundamental matrix F. The 3D coordinates (depth values λ_{i} associated with each point) could subsequently obtained from another constraint.

There exist different ways to eliminate the 3D parameters leading to different kinds of constraints which have been studied in Computer Vision.

A systematic elimination of these constraints will lead to a complete set of conditions.

Point Features

Consider images of a 3D point \boldsymbol{X} seen in multiple views:

$$
\mathcal{I} \vec{\lambda} \equiv\left(\begin{array}{cccc}
\boldsymbol{x}_{1} & 0 & \cdots & 0 \\
0 & \boldsymbol{x}_{2} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \boldsymbol{x}_{m}
\end{array}\right)\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{m}
\end{array}\right)=\left(\begin{array}{c}
\Pi_{1} \\
\Pi_{2} \\
\vdots \\
\Pi_{m}
\end{array}\right) \boldsymbol{X} \equiv \Pi \boldsymbol{X},
$$

which is of the form

$$
\mathcal{I} \vec{\lambda}=\Pi \boldsymbol{X}
$$

where $\vec{\lambda} \in \mathbb{R}^{m}$ is the depth scale vector, and $\Pi \in \mathbb{R}^{3 m \times 4}$ the multiple-view projection matrix associated with the image matrix $\mathcal{I} \in \mathbb{R}^{3 m \times m}$.

Note that apart from the 2D coordinates \mathcal{I}, everything else in the above equations is unknown. As in the two-view case, the goal is to decouple the above equation into constraints which allow to separately recover the camera displacements Π_{i} on one hand and the scene structure λ_{i} and \boldsymbol{X} on the other hand.

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View
Reconstruction
Algorithms
Multiple-View
Reconstruction of

Point Features

Every column of \mathcal{I} lies in a four-dimensional space spanned by columns of the matrix Π. In order to have a solution to the above equation, the columns of \mathcal{I} and Π must therefore be linearly dependent. In other words, the matrix

$$
N_{p} \equiv(\Pi, \mathcal{I})=\left(\begin{array}{ccccc}
\Pi_{1} & \boldsymbol{x}_{1} & 0 & \cdots & 0 \\
\Pi_{2} & 0 & \boldsymbol{x}_{2} & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\Pi_{m} & 0 & 0 & \cdots & \boldsymbol{x}_{m}
\end{array}\right) \in \mathbb{R}^{3 m \times(m+4)}
$$

must have a nontrivial right null space. For $m \geq 2$ (i.e. $3 m \geq m+4$), full rank would be $m+4$. Linear dependence of columns therefore implies the rank constraint:

$$
\operatorname{rank}\left(N_{p}\right) \leq m+3
$$

In fact, the vector $u \equiv\left(\boldsymbol{X}^{\top},-\vec{\lambda}^{\top}\right)^{\top} \in \mathbb{R}^{m+4}$ is in the right null space, as $N_{p} u=0$.

From Two Views to Multiple Views

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View
Reconstruction
Algorithms
Multiple-View
Reconstruction of
Lines

Point Features

Reconstruction from Multiple Views

Prof. Daniel Cremers

For a more compact formulation of the above rank constraint, we introduce the matrix

$$
\mathcal{I}^{\perp} \equiv\left(\begin{array}{cccc}
\widehat{\boldsymbol{x}_{1}} & 0 & \cdots & 0 \\
0 & \widehat{\boldsymbol{x}_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \widehat{\boldsymbol{x}_{m}}
\end{array}\right) \quad \in \mathbb{R}^{3 m \times 3 m},
$$

which has the property of "annihilating" \mathcal{I} :

$$
\mathcal{I}^{\perp} \mathcal{I}=0
$$

we can premultiply the above equation to obtain

$$
\mathcal{I}^{\perp} \Pi \boldsymbol{X}=0 .
$$

From Two Views to Multiple Views

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View Reconstruction Algorithms

Multiple-View Reconstruction of Lines

Point Features

Thus the vector \boldsymbol{X} is in the null space of the matrix

$$
W_{p} \equiv \mathcal{I}^{\perp} \Pi=\left(\begin{array}{c}
\widehat{\boldsymbol{x}_{1}} \Pi_{1} \\
\widehat{\boldsymbol{x}_{2}} \Pi_{2} \\
\vdots \\
\widehat{\boldsymbol{x}_{m}} \Pi_{m}
\end{array}\right) \quad \in \mathbb{R}^{3 m \times 4}
$$

To have a nontrivial solution, we must have

$$
\operatorname{rank}\left(W_{p}\right) \leq 3
$$

If all images \boldsymbol{x}_{i} are from a single 3D point \boldsymbol{X}, then the matrix W_{p} should only have a one-dimensional null space. Given m images $\boldsymbol{x}_{i} \in \mathbb{R}^{3}$ of a point p with respect to m camera frames Π_{i}, we must have the rank condition

$$
\operatorname{rank}\left(W_{p}\right)=\operatorname{rank}\left(N_{p}\right)-m \leq 3
$$

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View
Reconstruction
Algorithms
Multiple-View
Reconstruction of

Line Features

Reconstruction from Multiple Views

Prof. Daniel Cremers
We can derive a similar rank constraint for lines. As we saw above, for the coimages $\ell_{i}, i=1, \ldots, m$ of a line L spanned by a base \boldsymbol{X}_{0} and a direction \boldsymbol{V} we have:

$$
\ell_{i}^{\top} \Pi_{i} \boldsymbol{X}_{0}=\ell_{i}^{\top} \Pi_{i} \boldsymbol{V}=0 .
$$

Therefore the matrix

$$
W_{l} \equiv\left(\begin{array}{c}
\ell_{1}^{\top} \Pi_{1} \\
\ell_{2}^{\top} \Pi_{2} \\
\vdots \\
\ell_{m}^{\top} \Pi_{m}
\end{array}\right) \quad \in \mathbb{R}^{m \times 4}
$$

must satisfy the rank constraint

$$
\operatorname{rank}\left(W_{l}\right) \leq 2,
$$

since the null space of W_{l} contains the two vectors \boldsymbol{X}_{0} and \boldsymbol{V}.

Rank Constraints: Geometric Interpretation

In the case of a point \boldsymbol{X}, we had the equation

$$
W_{p} \boldsymbol{X}=0, \quad \text { with } W_{p}=\left(\begin{array}{c}
\widehat{\boldsymbol{x}_{1}} \Pi_{1} \\
\widehat{\boldsymbol{x}_{2}} \Pi_{2} \\
\vdots \\
\widehat{\boldsymbol{x}_{m}} \Pi_{m}
\end{array}\right) \in \mathbb{R}^{3 m \times 4}
$$

Since all matrices $\widehat{\boldsymbol{x}}_{i}$ have rank 2, the number of independent rows in W_{p} is at most $2 m$. These rows define a set of $2 m$ planes. Since $W_{p} \boldsymbol{X}=0$, the point \boldsymbol{X} is in the intersection of all these planes. In order for the $2 m$ planes to have a unique intersection, we need to have $\operatorname{rank}\left(W_{p}\right)=3$.

Rank Constraints: Geometric Interpretation

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View
Reconstruction
Algorithms
Multiple-View
Reconstruction of
The rows of the matrix W_{p} correspond to the normal vectors of four planes. The (nontrivial) rank constraint states that these four planes have to intersect in a single point.

Preimage of two image points.

Rank Constraints: Geometric Interpretation

In the case of a line L in two views, we have the equation

$$
\operatorname{rank}\left(W_{l}\right) \leq 2, \quad \text { with } W_{l}=\binom{\ell_{1}^{\top} \Pi_{1}}{\ell_{2}^{\top} \Pi_{2}} \quad \in \mathbb{R}^{2 \times 4}
$$

Clearly, we already have $\operatorname{rank}\left(W_{l}\right) \leq 2$, so there is no intrinsic constraint on two images of a line: The preimage of two image lines always contains a line. We shall see that this is no longer true for three or more images of a line, then the above constraint really becomes meaningful.

Rank Constraints: Geometric Interpretation

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View Reconstruction Algorithms

Multiple-View Reconstruction of Lines

For the case of a line observed from two images, the rank constraint is always fulfilled. Geometrically this states that the two preimages of each line always intersect in some 3D line.

The Multiple-view Matrix of a Point

In the following, the rank constraints will be rewritten in a more compact and transparent manner. Let us assume we have m images, the first of which is in world coordinates. Then we have projection matrices of the form

$$
\Pi_{1}=[I, 0], \Pi_{2}=\left[R_{2}, T_{2}\right], \ldots, \Pi_{m}=\left[R_{m}, T_{m}\right] \in \mathbb{R}^{3 \times 4}
$$

which model the projection of a point \boldsymbol{X} into the individual images.

In general for uncalibrated cameras (i.e. $K_{i} \neq I$), R_{i} will not be an orthogonal rotation matrix but rather an arbitrary invertible matrix.

Again, we define the matrix W_{p} as follows:

$$
W_{p} \equiv \mathcal{I}^{\perp} \Pi=\left(\begin{array}{c}
\widehat{\boldsymbol{x}_{1}} \Pi_{1} \\
\widehat{\boldsymbol{x}_{2}} \Pi_{2} \\
\vdots \\
\widehat{\boldsymbol{x}_{m}} \Pi_{m}
\end{array}\right) \quad \in \mathbb{R}^{3 m \times 4} .
$$

From Two Views to Multiple Views

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View
Reconstruction
Algorithms
Multiple-View
Reconstruction of Lines

The Multiple-view Matrix of a Point

Reconstruction from Multiple Views

Prof. Daniel Cremers
The rank of the matrix W_{p} is not affected if we multiply by a full-rank matrix $D_{p} \in \mathbb{R}^{4 \times 5}$ as follows:

$$
W_{p} D_{p}=\left(\begin{array}{c}
\widehat{\boldsymbol{x}_{1}} \Pi_{1} \\
\widehat{\boldsymbol{x}_{2}} \Pi_{2} \\
\vdots \\
\vdots \\
\widehat{\boldsymbol{x}_{m}} \Pi_{m}
\end{array}\right)\left(\begin{array}{ccc}
\widehat{\boldsymbol{x}_{1}} & \boldsymbol{x}_{1} & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\widehat{\widehat{\boldsymbol{x}_{1}} \widehat{\widehat{1}}} & 0 & 0 \\
\widehat{\boldsymbol{x}_{2}} R_{2} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{2}} R_{2} \boldsymbol{x}_{1} & \widehat{\widehat{\boldsymbol{x}_{2}} T_{2}} \\
\widehat{\boldsymbol{x}_{3} R_{3} \widehat{\boldsymbol{x}_{1}}} & \widehat{\boldsymbol{x}_{3}} R_{3} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{3}} T_{3} \\
\vdots & \vdots & \vdots \\
\widehat{\boldsymbol{x}_{m} R_{m} \widehat{\boldsymbol{x}_{1}}} & \widehat{\boldsymbol{x}_{m}} R_{m} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{m}} T_{m}
\end{array}\right)
$$

This means that $\operatorname{rank}\left(W_{p}\right) \leq 3$ if and only if the submatrix

$$
M_{p} \equiv\left(\begin{array}{cc}
\widehat{\boldsymbol{x}_{2}} R_{2} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{2}} T_{2} \\
\widehat{\boldsymbol{x}_{3}} R_{3} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{3}} T_{3} \\
\vdots & \vdots \\
\widehat{\boldsymbol{x}_{m}} R_{m} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{m}} T_{m}
\end{array}\right) \quad \in \mathbb{R}^{3(m-1) \times 2}
$$

has $\operatorname{rank}\left(M_{p}\right) \leq 1$.

The Multiple-view Matrix of a Point

The matrix

$$
M_{p} \equiv\left(\begin{array}{cc}
\widehat{\boldsymbol{x}_{2}} R_{2} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{2}} T_{2} \\
\widehat{\boldsymbol{x}_{3}} R_{3} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{3}} T_{3} \\
\vdots & \vdots \\
\widehat{\boldsymbol{x}_{m}} R_{m} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{m}} T_{m}
\end{array}\right) \quad \in \mathbb{R}^{3(m-1) \times 2}
$$

is called the multiple-view matrix associated with a point p. It involves both the image \boldsymbol{x}_{1} in the first view and the coimages $\widehat{\boldsymbol{x}}_{i}$ in the remaining views.
In summary:
For multiple images of a point p the matrices N_{p}, W_{p} and M_{p} satisfy:

$$
\operatorname{rank}\left(M_{p}\right)=\operatorname{rank}\left(W_{p}\right)-2=\operatorname{rank}\left(N_{p}\right)-(m+2) \leq 1 .
$$ from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiview Matrix: Geometric Interpretation

Let us look into the geometric information contained in the multiple-view matrix

$$
M_{p} \equiv\left(\begin{array}{cc}
\widehat{\boldsymbol{x}_{2}} R_{2} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{2}} T_{2} \\
\widehat{\boldsymbol{x}_{3}} R_{3} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{3}} T_{3} \\
\vdots & \vdots \\
\widehat{\boldsymbol{x}_{m}} R_{m} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{m}} T_{m}
\end{array}\right) \quad \in \mathbb{R}^{3(m-1) \times 2}
$$

The constraint $\operatorname{rank}\left(M_{p}\right) \leq 1$ implies that the two columns are linearly dependent. In fact we have $\lambda_{1} \widehat{\boldsymbol{x}}_{i} R_{i} \boldsymbol{x}_{1}+\widehat{\boldsymbol{x}}_{i} T_{i}=0, i=2, \ldots, m$ which yields

$$
M_{p}\binom{\lambda_{1}}{1}=0
$$

Therefore the coefficient capturing the linear dependence is simply the distance λ_{1} of the point p from the first camera center. In other words, the multiple-view matrix captures exactly the information about a point p that is missing from a single image, but encoded in multiple images.

Relation to Epipolar Constraints

Multiple-View
Reconstruction
Algorithms
Multiple-View

Relation to Epipolar Constraints

For the multiple-view matrix

$$
M_{p} \equiv\left(\begin{array}{cc}
\widehat{\boldsymbol{x}_{2}} R_{2} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{2}} T_{2} \\
\widehat{\boldsymbol{x}_{3}} R_{3} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{3}} T_{3} \\
\vdots & \vdots \\
\widehat{\boldsymbol{x}_{m}} R_{m} \boldsymbol{x}_{1} & \widehat{\boldsymbol{x}_{m}} T_{m}
\end{array}\right) \quad \in \mathbb{R}^{3(m-1) \times 2}
$$

to have $\operatorname{rank}\left(M_{p}\right)=1$, it is necessary that the pair of vectors $\widehat{\boldsymbol{x}}_{i} T_{i}$ and $\widehat{\boldsymbol{x}}_{i} R_{i} \boldsymbol{X}_{1}$ to be linearly dependent for all $i=2, \ldots, m$. This gives the epipolar constraints

$$
\boldsymbol{x}_{i}^{\top} \widehat{T}_{i} R_{i} \boldsymbol{x}_{1}=0
$$

between the first and the i-th image. (Proof see next slide) Yet, we shall see that the multiview constraint provides more information than the pairwise epipolar constraints.

Relation to Epipolar Constraints

In the previous slide, we claimed that the linear dependence of $\widehat{\boldsymbol{x}}_{i} T_{i}$ and $\widehat{\boldsymbol{x}}_{i} R_{i} \boldsymbol{x}_{1}$ gives rise to the epipolar constraint $\boldsymbol{x}_{i}^{\top} \hat{T}_{i} R_{i} \boldsymbol{x}_{1}=0$. In the following, we shall give a proof of this statement which provides an intuitive geometric understanding of this relationship.
Assume the two vectors $\widehat{\boldsymbol{x}}_{i} T_{i}$ and $\widehat{\boldsymbol{x}}_{i} R_{i} \boldsymbol{x}_{1}$ are dependent, i.e. there is a scalar γ, such that

$$
\widehat{\boldsymbol{x}}_{i} T_{i}=\gamma \widehat{\boldsymbol{x}}_{i} R_{i} \boldsymbol{x}_{1} .
$$

Since $\widehat{\boldsymbol{x}}_{i} T_{i} \equiv \boldsymbol{x}_{i} \times T_{i}$ is proportional to the normal on the plane spanned by \boldsymbol{x}_{i} and T_{i}, and $\widehat{\boldsymbol{x}}_{i} R_{i} \boldsymbol{x}_{1}$ is proportional to the normal spanned by \boldsymbol{x}_{i} and $R_{i} \boldsymbol{x}_{1}$, the linear dependence is equivalent to saying that the three vectors $\boldsymbol{x}_{i}, T_{i}$ and $R_{i} \boldsymbol{x}_{1}$ are coplanar.

This again is equivalent to saying that the vector \boldsymbol{x}_{i} is orthogonal to the normal on the plane spanned by the vectors T_{i} and $R_{i} \boldsymbol{x}_{1}$, i.e.

$$
\boldsymbol{x}_{i}^{\top}\left(T_{i} \times R_{i} \boldsymbol{x}_{1}\right)=\boldsymbol{x}_{i}^{\top} \hat{T}_{i} R_{i} \boldsymbol{x}_{1}=0
$$

Analysis of the Multiple-view Constraint

For any nonzero vectors $a_{i}, b_{i} \in \mathbb{R}^{3}, i=1,2, \ldots, n$, the matrix

$$
\left(\begin{array}{cc}
a_{1} & b_{1} \\
a_{2} & b_{2} \\
\vdots & \vdots \\
a_{n} & b_{n}
\end{array}\right) \in \mathbb{R}^{3 n \times 2}
$$

is rank-deficient if and only if $a_{i} b_{j}^{\top}-b_{i} a_{j}^{\top}=0$ for all $i, j=1, \ldots, n$. We will not prove this statement. Applied to the rank constraint on M_{p} we get:

$$
\widehat{\boldsymbol{x}}_{i} R_{i} \boldsymbol{x}_{1}\left(\widehat{\boldsymbol{x}}_{j} T_{j}\right)^{\top}-\widehat{\boldsymbol{x}}_{i} T_{i}\left(\widehat{\boldsymbol{x}}_{j} R_{j} \boldsymbol{x}_{1}\right)^{\top}=0
$$

which gives the trilinear constraint

$$
\widehat{\boldsymbol{x}}_{i}\left(T_{i} \boldsymbol{x}_{1}^{\top} R_{j}^{\top}-R_{i} \boldsymbol{x}_{1} T_{j}^{\top}\right) \widehat{\boldsymbol{x}}_{j}=0
$$

This is a matrix equation giving $3 \times 3=9$ scalar trilinear equations, only four of which are linearly independent.

From Two Views to Multiple Views

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Analysis of the Multiple-view Constraint

From the equations

$$
\widehat{\boldsymbol{x}}_{i} R_{i} \boldsymbol{x}_{1}\left(\widehat{\boldsymbol{x}}_{j} T_{j}\right)^{\top}-\widehat{\boldsymbol{x}}_{i} T_{i}\left(\widehat{\boldsymbol{x}}_{j} R_{j} \boldsymbol{x}_{1}\right)^{\top}=0, \quad \forall i, j,
$$

we see that as long as the entries in $\widehat{\boldsymbol{x}}_{j} T_{j}$ and $\widehat{\boldsymbol{x}}_{j} R_{j} \boldsymbol{x}_{1}$ are non-zero, it follows from the above, that the two vectors $\widehat{\boldsymbol{x}}_{i} R_{i} \boldsymbol{x}_{1}$ and $\widehat{\boldsymbol{x}}_{i} T_{i}$ are linearly dependent. If on the other hand $\widehat{\boldsymbol{x}}_{j} T_{j}=\widehat{\boldsymbol{x}}_{j} R_{j} \boldsymbol{x}_{1}=0$ for some view j, then we have the rare degenerate case that the point p lies on the line through the optical centers O_{1} and o_{j}.
In other words: Except for degeneracies, the bilinear (epipolar) constraints relating two views are already contained in the trilinear constraints obtained for the multiview scenario.

Note that the equivalence between the bilinear and trilinear constraints on one hand and the condition that $\operatorname{rank}\left(M_{p}\right) \leq 1$ on the other only holds if the vectors in M_{p} are nonzero. In certain degenerate cases this is is not fulfilled.

Uniqueness of the Preimage

We will now clarify how the bilinear and trilinear constraints help to assure the uniqueness of the preimage of a point observed in three images.
Let $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3} \in \mathbb{R}^{3}$ be the 2D point coordinates in three camera frames with distinct optical centers. If the three images satisfy the pairwise epipolar constraints

$$
\boldsymbol{x}_{i}^{\top} \widehat{T_{i j}} R_{i j} \boldsymbol{x}_{j}=0, \quad i, j=1,2,3
$$

then a unique preimage is determined except if the three lines associated to image points $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}$ are coplanar. Here $T_{i j}$ and $R_{i j}$ refer to the transition between frames i and j.
Similarly, if these vectors satisfy all trilinear constraints

$$
\widehat{\boldsymbol{x}}_{j}\left(T_{j i} \boldsymbol{x}_{i}^{\top} R_{k i}^{\top}-R_{j i} \boldsymbol{x}_{i} T_{k i}^{\top}\right) \widehat{\boldsymbol{x}_{k}}=0, \quad i, j, k=1,2,3,
$$

then a unique preimage is determined unless the three lines associated to image points $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}$ are colinear.
We will not prove these statements.
.

Degeneracies for the Bilinear Constraints

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric

 InterpretationThe Multiple-view Matrix degenerate case arises rather seldom.

Degeneracies for the Bilinear Constraints

In the above example, the optical centers lie on a straight line (rectilinear motion). Again, all pairs of lines may intersect without there being a unique preimage p.
This case is frequent in applications when the camera moves in a straight line (e.g. a car on a highway). Then the epipolar constraints will not allow a unique reconstruction.

Fortunately, the trilinear constraint assures a unique preimage (unless p is also on the same line with the optical centers).

Uniqueness of the Preimage

Using the multiple-view matrix we obtain a more general and simpler characterization regarding the uniqueness of the preimage:

Given m vectors representing the m images of a point in m views, they correspond to the same point in the $3 D$ space if the rank of the M_{p} matrix relative to any of the camera frames is one. If the rank is zero, the point is determined up to the line on which all the camera centers must lie.

In summary we get:

$$
\begin{aligned}
& \operatorname{rank}\left(M_{p}\right)=2 \Rightarrow \text { no point correspondence \& empty preimage } \\
& \operatorname{rank}\left(M_{p}\right)=1 \Rightarrow \text { point correspondence \& unique preimage } \\
& \operatorname{rank}\left(M_{p}\right)=0 \Rightarrow \text { point correspondence \& preimage not unique }
\end{aligned}
$$

With these constraints we could decide which features to match for establishing point correspondence over multiple frames.

Multiple-view Factorization of Point Features

From Two Views to Multiple Views

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View
Reconstruction Algorithms

Multiple-View Reconstruction of Lines

Multiple-view Factorization of Point Features

Suppose we have m images $\boldsymbol{x}_{1}^{j}, \ldots, \boldsymbol{x}_{m}^{j}$ of n points p^{j} and we want to estimate the unknown projection matrix Π.
The condition $\operatorname{rank}\left(M_{p}\right) \leq 1$ states that the two columns of M_{p} are linearly dependent. For the j-th point p^{j} this implies

$$
\left(\begin{array}{c}
\widehat{\boldsymbol{x}_{2}^{j}} R_{2} \boldsymbol{x}_{1}^{j} \\
\widehat{\boldsymbol{x}_{3}^{j}} R_{3} \boldsymbol{x}_{1}^{j} \\
\vdots \\
\widehat{\boldsymbol{x}_{m}^{j}} R_{m} \boldsymbol{x}_{1}^{j}
\end{array}\right)+\alpha^{j}\left(\begin{array}{c}
\widehat{\boldsymbol{x}_{2}^{j}} T_{2} \\
\widehat{\boldsymbol{x}_{3}^{j}} T_{3} \\
\vdots \\
\widehat{\boldsymbol{x}_{m}^{j}} \boldsymbol{T}_{m}
\end{array}\right)=0 \quad \in \mathbb{R}^{3(m-1) \times 1}
$$

for some parameters $\alpha^{j} \in \mathbb{R}, j=1, \ldots, n$. Each row in the above equation can be obtained from $\lambda_{i}^{j} \boldsymbol{x}_{i}^{j}=\lambda_{1}^{j} R_{i} \boldsymbol{x}_{1}^{j}+T_{i}$, multiplying by $\widehat{\boldsymbol{x}_{i}^{j}}$:

$$
\widehat{\boldsymbol{x}_{i}^{j}} R_{i} \boldsymbol{x}_{1}^{j}+\widehat{\boldsymbol{x}_{i}^{j}} T_{i} / \lambda_{1}^{j}=0
$$

Therefore, $\alpha^{j}=1 / \lambda_{1}^{j}$ is nothing but the inverse of the depth of point p^{j} with respect to the first frame.

From Two Views to Multiple Views

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Motion Estimation from Known Structure

Assume we have the depth of the points and thus their inverse α^{j} (i.e. known structure). Then the above equation is linear in the camera motion parameters R_{i} and T_{i}. Using the stack notation $R_{i}^{s}=\left[r_{11}, r_{21}, r_{31}, r_{12}, r_{22}, r_{32}, r_{13}, r_{23}, r_{33}\right]^{\top} \in \mathbb{R}^{9}$ and $T_{i} \in \mathbb{R}^{3}$, we have the linear equation system

One can show that the matrix $P_{i} \in \mathbb{R}^{3 n \times 12}$ is of rank 11 if more than $n=6$ points in general position are given. In that case the null space of P_{i} is onedimensional and the projection matrix $\Pi_{i}=\left(R_{i}, T_{i}\right)$ is given up to a scale factor. In practice one would use more than 6 points, obtain a full-rank matrix and compute the solution by a singular value decomposition (SVD).

Relation to Epipolar Constraints

Structure Estimation from Known Motion

In turn, if the camera motion $\Pi_{i}=\left(R_{i}, T_{i}\right), i=1, \ldots, m$ is known, we can estimate the structure (depth parameters $\left.\alpha^{j}, j=1, \ldots, m\right)$. The least squares solution for the above equation is given by:

$$
\alpha^{j}=-\frac{\sum_{i=2}^{m}\left(\widehat{\boldsymbol{x}_{i}^{j}} T_{i}\right)^{\top} \widehat{\boldsymbol{x}_{i}^{j}} R_{i} \boldsymbol{x}_{1}^{j}}{\sum_{i=2}^{m}\left\|\widehat{\boldsymbol{x}_{i}^{j}} T_{i}\right\|^{2}}, \quad j=1, \ldots, n .
$$

In this way one can iteratively estimate structure and motion, estimating one while keeping the other fixed.
For initialization one could apply the eight-point algorithm to the first two images to obtain an estimate of the structure parameters α^{j}.
While the equation for Π_{i} makes use of the two frames 1 and i only, the structure parameter estimation takes into account all frames. This can be done either in batch mode or recursively.

As for the two-view case, such spectral approaches do not guarantee optimality in the presence of noise and uncertainty.

Multiple-view Matrix for Lines

The matrix

$$
W_{l}=\left(\begin{array}{c}
\ell_{1}^{\top} \Pi_{1} \\
\ell_{2}^{\top} \Pi_{2} \\
\vdots \\
\ell_{m}^{\top} \Pi_{m}
\end{array}\right) \quad \in \mathbb{R}^{m \times 4}
$$

associated with m images of a line in space satisfies the rank constraint $\operatorname{rank}\left(W_{l}\right) \leq 2$, because $W_{l} \boldsymbol{X}_{0}=W_{l} \boldsymbol{V}=0$ for the base point \boldsymbol{X}_{0} and the direction \boldsymbol{V} of the line. To find a more compact representation, let us assume that the first camera is in world coordinates, i.e. $\Pi_{1}=(I, 0)$. The rank is not affected by multiplying with a full-rank matrix $D_{I} \in \mathbb{R}^{4 \times 5}$:

$$
W_{l} D_{l}=\left(\begin{array}{cc}
\ell_{1}^{\top} & 0 \\
\ell_{2}^{\top} R_{2} & \ell_{2}^{\top} T_{2} \\
\vdots & \vdots \\
\ell_{m}^{\top} R_{m} & \ell_{m}^{\top} T_{m}
\end{array}\right)\left(\begin{array}{ccc}
\ell_{1} & \widehat{\ell_{1}} & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\ell_{1}^{\top} \ell_{1} & 0 & 0 \\
\ell_{2}^{\top} R_{2} \ell_{1} & \ell_{2}^{\top} R_{2} \widehat{\ell_{1}} & \ell_{2}^{\top} T_{2} \\
\vdots & \vdots & \vdots \\
\ell_{m}^{\top} R_{m} \ell_{1} & \ell_{m}^{\top} R_{m} \widehat{\ell_{1}} & \ell_{m}^{\top} T_{m}
\end{array}\right)
$$

Reconstruction from Multiple Views

Prof. Daniel Cremers

From Two Views to Multiple Views

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View Reconstruction Algorithms

Multiple-view Matrix for Lines

Since multiplication with a full rank matrix does not affect the rank, we have

$$
\operatorname{rank}\left(W_{l} D_{l}\right)=\operatorname{rank}\left(W_{l}\right) \leq 2
$$

Since the first column of $W_{l} D_{l}$ is linearly independent from the remaining ones, the submatrix

$$
M_{l}=\left(\begin{array}{cc}
\ell_{2}^{\top} R_{2} \widehat{\ell}_{1} & \ell_{2}^{\top} T_{2} \\
\vdots & \vdots \\
\ell_{m}^{\top} R_{m} \widehat{\ell_{1}} & \ell_{m}^{\top} T_{m}
\end{array}\right) \quad \in \mathbb{R}^{(m-1) \times 5}
$$

has the rank constraint:

$$
\operatorname{rank}\left(M_{l}\right) \leq 1 .
$$

For the case of a line projected into m images, we have a much stronger rank-constraint than in the case of a projected point: For a sufficiently large number of views m, the matrix M_{l} could in principle have a rank of five. The above constraint states that a meaningful preimage of m observed lines can only exist if $\operatorname{rank}\left(M_{l}\right) \leq 1$.

Trilinear Constraints for a Line

Again, we can take a closer look at the meaning of the above rank constraint. Regarding the first three columns of M_{l} it implies that respective row vectors must be pairwise linearly dependent, i.e. for all $i, j \neq 1$:

$$
\ell_{i}^{\top} R_{i} \widehat{\ell_{1}} \sim \ell_{j}^{\top} R_{j} \widehat{\ell_{1}},
$$

which is equivalent to the trilinear equation

$$
\ell_{i}^{\top} R_{i} \widehat{\ell_{1}} R_{j}^{\top} \ell_{j}=0
$$

Proof: The above proportionality states that the three vectors $R_{i}^{\top} \ell_{i}, R_{j}^{\top} \ell_{j}$ and ℓ_{1} are coplanar. The lower equation is the equivalent statement that the vector $R_{i}^{\top} \ell_{i}$ is orthogonal to the normal on the plane spanned by $R_{j}^{\top} \ell_{j}$ and ℓ_{1}.
Interestingly, the above constraint only involves the camera rotations, not the camera translations.

Trilinear Constraints for a Line

Taking into account the fourth column of the multiple-view matrix M_{l}, the rank constraint implies the linear dependency between the i th and the j th row. This is equivalent to the trilinear constraint:

$$
\ell_{j}^{\top} T_{j} \ell_{i}^{\top} R_{i} \widehat{\ell_{1}}-\ell_{i}^{\top} T_{i} \ell_{j}^{\top} R_{j} \widehat{\ell_{1}}=0
$$

The proof follows from the general lemma on page 25.
The above constraint relates the first, the ith and the j th images. From previous discussion, we saw that all nontrivial constraints in the case of lines involve at least three images. The two trilinear constraints above are equivalent to the rank constraint if the scalar $\ell_{i}^{\top} T_{i} \neq 0$, i.e. in non-degenerate cases.
In general, $\operatorname{rank}\left(M_{l}\right) \leq 1$ if and only if all its 2×2-minors (deutsch: Untermatrizen), have zero determinant. Since these minors only include three images at a time, one can conclude that any multiview constraint on lines can be reduced to constraints which only involve three lines at a time.

Uniqueness of the Preimage

The key idea of the rank constraint on the multiple-view matrix M_{l} was to assure that m observations of a line correspond to a consistent preimage L. The uniqueness of the preimage in the case of the trilinear constraints can be characterized as follows.

Lemma: Given three camera frames with distinct optical centers and any three vectors $\ell_{1}, \ell_{2}, \ell_{3} \in \mathbb{R}^{3}$ that represent three image lines. If the three image lines satisfy the trilinear constraints

$$
\ell_{j}^{\top} T_{j i} \ell_{k}^{\top} R_{k i} \widehat{\ell}_{i}-\ell_{k}^{\top} T_{k i} \ell_{j}^{\top} R_{j i j} \widehat{\ell}_{i}=0, \quad i, j, k \in\{1,2,3\},
$$

then their preimage L is uniquely determined except for the case in which the preimage of every ℓ_{i} is the same plane in space. This is the only degenerate case, and in this case, the matrix M_{l} becomes zero.

Note that the above constraint combines the two trilinear constraints introduced on the previous slides.

Uniqueness of the Preimage

Reconstruction from Multiple Views

Prof. Daniel Cremers

From Two Views to Multiple Views

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View Reconstruction Algorithms

No preimage: The lines L_{2} and L_{3} don't coincide.

Uniqueness of the Preimage

Reconstruction from Multiple Views

Prof. Daniel Cremers

From Two Views to Multiple Views

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View Reconstruction Algorithms

Uniqueness of the preimage: The lines L_{2} and L_{3} coincide.

Uniqueness of the Preimage

A similar statement can be made regarding the uniqueness of the preimage of m lines in relation to the rank of the multiview matrix M_{I}.

Theorem: Given m vectors $\ell_{i} \in \mathbb{R}^{3}$ representing images of lines with respect to m camera frames. They correspond to the same line in space if the rank of the matrix M_{l} relative to any of the camera frames is 1 . If its rank is 0 (i.e. the matrix M_{l} itself is zero), then the line is determined up to a plane on which all the camera centers must lie.

Overall we have the following cases:
$\operatorname{rank}\left(M_{l}\right)=2 \Rightarrow$ no line correspondence
$\operatorname{rank}\left(M_{l}\right)=1 \Rightarrow$ line correspondence \& unique preimage
$\operatorname{rank}\left(M_{l}\right)=0 \Rightarrow$ line correspondence \& preimage not unique

Summary

One can generalize the two-view scenario to that of simultaneously considering $m \geq 2$ images of a scene. The intrinsic constraints among multiple images of a point or a line can be expressed in terms of rank conditions on the matrix N, W or M.

The relationship among these rank conditions is as follows:

	(Pre)image	coimage	Jointly
Point	$\operatorname{rank}\left(N_{p}\right) \leq m+3$	$\operatorname{rank}\left(W_{p}\right) \leq 3$	$\operatorname{rank}\left(M_{p}\right) \leq 1$
Line	$\operatorname{rank}\left(N_{l}\right) \leq 2 m+2$	$\operatorname{rank}\left(W_{l}\right) \leq 2$	$\operatorname{rank}\left(M_{l}\right) \leq 1$

These rank conditions capture the relationships among corresponding geometric primitives in multiple images. They impose the existence of unique preimages (up to degenerate cases). Moreover, they give rise to natural factorization-based algorithms for multiview recovery of 3D structure and motion (i.e. generalizations of the eight-point algorithm).

Preimage \& Coimage from Multiple Views

From Preimages to Rank Constraints

Geometric Interpretation

The Multiple-view Matrix

Relation to Epipolar Constraints

Multiple-View Reconstruction Algorithms

