Multiple View Geometry: Exercise Sheet 5

Prof. Dr. Daniel Cremers, Robert Maier, Rui Wang, TU Munich

http://vision.in.tum.de/teaching/ss2016/mvg2016

Exercise: June 9th, 2016

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

Harris Corner Detector

In this exercise you will implement the Harris corner detector.
Hint: Again, it is possible to implement this exercise without loops. However, we recommend to start with a loop-based version, and only afterwards replace the loops by single function calls. For quick testing, we provide a small image small.png.

1. Download ex5.zip from the website.
2. Compute the structure tensor as introduced in the lecture for every pixel of the image. Implement the missing parts in getM.m.
(a) Compute the image gradients I_{x} and I_{y} (in x - and y-direction) using central differences.
(b) As weighting function use a two-dimensional Gaussian Kernel with a standard deviation of $\sigma_{w}=2$. Compute the kernel size k (and hence the integration window size) as $k=$ $2 *\left(2 * \sigma_{w}\right)+1$.
Hint: you can use fspecial (see Exercise Sheet 1).
(c) The structure tensor M for pixel x, y is a 2×2 matrix, which summarizes the structure of the image in the vicinity (determined by σ_{w}) of the pixel x, y. It can e.g. be interpreted as (weighted) covariance matrix of the image gradient around the pixel, and is computed as

$$
M(x, y):=\sum_{\left(x^{\prime}, y^{\prime}\right)} w\left(x^{\prime}-x, y^{\prime}-y\right)\left(\begin{array}{cc}
I_{x}^{2}\left(x^{\prime}, y^{\prime}\right) & I_{x}\left(x^{\prime}, y^{\prime}\right) I_{y}\left(x^{\prime}, y^{\prime}\right) \tag{1}\\
I_{x}\left(x^{\prime}, y^{\prime}\right) I_{y}\left(x^{\prime}, y^{\prime}\right) & I_{y}^{2}\left(x^{\prime}, y^{\prime}\right)
\end{array}\right)
$$

where I_{x} and I_{y} are the x and y image gradients, and w is the weighting function.
Hint: use conv2.
3. Compute the scoring function $C(x, y):=\operatorname{det}(M(x, y))+\kappa \operatorname{trace}^{2}(M(x, y))$ using $\kappa=0.05$. Therefore, complete the missing parts in getHarrisCorners.m. Visualize the scoring function using imagesc. Hint: if you cannot see much, try to display a non-linearly transformed scoring function, e.g. sign $(C) \cdot|C|^{\frac{1}{4}}$.
4. Find all pixels x for which $C(x)>\theta$, and which are a local maximum of the scoring function, i.e., all four adjacent pixel have a lower score (non-maximum suppression). Use $\theta=10^{-7}$. Display the found Harris Corners using the provided function drawPts.
5. Try different values for σ_{w} - what do you observe?

Patch Tracking
Compute the local velocity of each pixel from img1 to img2 in file getFlow.m.

1. Again, compute the image gradients I_{x} and I_{y} as well as the time derivative I_{t}.
2. Compute the structure tensor (re-use the first exercise), considering also the Gaussian weighting function.
3. Compute the local velocity of each pixel using the formula from the slides.
4. Visualize your result using imagesc.
