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Exercise: July 7th, 2016

Part I: Exam Preparation

With regard to the upcoming exam, we can discuss topics covered in the lecture or previous exercises
in the upcoming exercise session on July 14th, 2016. It might be beneficial to send us your questions
tomvg-ssl6@vision.in.tum.de before the exercise session.

Part I1: Practical Exercises

In this exercise you will continue with the implementation of direct image alignment on SE(3) from
Exercise 8, we recommend that you finish Exercises 1 to 4 from Exercise Sheet 8. As a basis, you
can either use the provided solution for Exercise 8 on the website, use your own implementation or
download the package ex 9. z1ip provided on the website.

1. Implement Huber weighting, in order to make your solution robust to outliers. Use GIMP to
add some “outliers” to the images, and test your implementation. You will have to implement
iteratively re-weighted least-squares (see e.g. Wikipedia). The main idea is to use the Huber
norm of the residuals instead of the squared residual:
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To minimize this error function using Gauss-Newton, in each iteration it is re-formulated to a
weighted sum of squares:
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The weighted update is then computed using
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where W is a diagonal matrix containing the w;(§); it has to be re-computed every iteration.
Use 6 = 4 for the Huber norm.



2. Adapt your solution to use Gradient Descent instead of Gauss-Newton to minimize the error
function. What is a good stepsize?

3. Adapt your solution to use the Levenberg-Marquardt Algorithm for minimization. Test your
implementation using the corrupted test images rgb/+_broken.png from the solution of
exercise 8. Compare results and convergence behavior with Gauss-Newton and gradient descent.



