Analysis of Three-Dimensional Shapes
F. R. Schmidt, M. Vestner, Z. Lähner

Summer Semester 2016

Computer Vision Group
Institut für Informatik
Technische Universität München

## Weekly Exercises 4

Room: 02.09.023
Wed, 25.05.2016, 14:00-16:00
Submission deadline: Tue, 24.05.2016, 23:59 to laehner@in.tum.de

## Mathematics: Linear Algebra Recap

Let $X$ be a vector space. An inner product is a function $f: X \times X \rightarrow \mathbb{C}$ with the following properties:

1. $f(x, x) \geq 0 \quad \forall x \in X$ and $f(x, x)=0 \Leftrightarrow x=0$
2. $f(x, y)=\overline{f(y, x)}$
3. $f\left(x+\alpha x^{\prime}, y\right)=f(x, y)+\alpha f\left(x^{\prime}, y\right) \quad \forall x, x^{\prime}, y \in X, \alpha \in \mathbb{C}$

The standard inner product is defined as $\langle x, y\rangle=x^{\top} \bar{y}, x, y \in \mathbb{R}^{n}$. If $M \in \mathbb{R}^{n \times n}$ is a symmetric, positive definite matrix an $M$-inner product can be defined by taking $\langle x, y\rangle_{M}=x^{\top} M y$.

A linear operator $T: X \rightarrow X$ is called self-adjoint w.r.t. an inner product if the following holds:

$$
\langle T x, y\rangle=\langle x, T y\rangle
$$

An eigenvector is an element $0 \neq x \in X$ for which there exists a scalar $\lambda \in \mathbb{C}$ such that

$$
T x=\lambda x
$$

The scalar $\lambda$ is called eigenvalue.
Exercise 1. Let $L=M^{-1} S \in \mathbb{R}^{n \times n}$ be self-adjoint w.r.t. the $M$ inner product. Show that the following statements hold.

1. $S$ is symmetric (self-adjoint) w.r.t. to the standard inner product.
2. The eigenvalues of $L$ are real.
3. The eigenvectors $v_{i}, v_{j}$ with respective eigenvalues $\lambda_{i} \neq \lambda_{j}$ are orthogonal.
4. $v_{1}, \ldots, v_{k}$ are eigenvectors of $L$ with the same eigenvalue $\lambda$, then $\sum_{i} \alpha_{i} v_{i}$ is also an eigenvector with eigenvalue $\lambda$.

Solution. 1.

$$
\begin{aligned}
\langle S x, y\rangle & =x^{\top} S^{\top} \bar{y}=x^{\top} S^{\top} M^{-1} M y \\
& =\left\langle M^{-1} S x, y\right\rangle_{M}=\langle L x, y\rangle_{M} \\
& =\langle x, L y\rangle_{M}=x^{\top} M M^{-1} S \bar{y} \\
& =\langle x, S y\rangle
\end{aligned}
$$

2. Let $\lambda$ be an eigenvalue of $L$ such that $L v=\lambda v$.

$$
\begin{aligned}
\lambda\langle v, v\rangle_{M} & =\langle\lambda v, v\rangle_{M} \\
& =\langle L v, v\rangle_{M}=\langle v, L v\rangle \\
& =\langle v, \lambda v\rangle \\
& =\bar{\lambda}\langle v, v\rangle
\end{aligned}
$$

3. 

$$
\begin{aligned}
\lambda_{i}\left\langle v_{i}, v_{j}\right\rangle & =\left\langle\lambda_{i} v_{i}, v_{j}\right\rangle \\
& =\left\langle L v_{i}, v_{j}\right\rangle=\left\langle v_{i}, L v_{j}\right\rangle \\
& =\left\langle v_{i}, \lambda_{j} v_{j}\right\rangle \\
& =\lambda_{j}\left\langle v_{i}, v_{j}\right\rangle
\end{aligned}
$$

Since we assumed $\lambda_{i} \neq \lambda_{j}$ this is only possible when $\left\langle v_{i}, v_{j}\right\rangle=0$.
4.

$$
\begin{aligned}
L\left(\sum_{i} \alpha_{i} v_{i}\right) & =\sum_{i} \alpha_{i} L v_{i} \\
& =\sum_{i} \alpha_{i} \lambda v_{i} \\
& =\lambda\left(\sum_{i} \alpha_{i} v_{i}\right)
\end{aligned}
$$

