
Analysis of Three-Dimensional Shapes Computer Vision Group
F. R. Schmidt, M. Vestner, Z. Lähner Institut für Informatik
Summer Semester 2016 Technische Universität München

Weekly Exercises 5
Room: 02.09.023

Wed, 01.06.2016, 14:00-16:00
Submission deadline: Tue, 31.05.2016, 23:59 to laehner@in.tum.de

Mathematics

Exercise 1 (2 points). Find a map ϕ : Tref → R3 that is

1. angle-preserving but not area-preserving

2. area-preserving but not angle-preserving

Tref = conv ((0, 0), (0, 1), (1, 0)) is the reference triangle as used in the lecture. The
image should be a triangle in 3D.

Solution. 1.

ϕ1 : (u, v) 7→ (2 · u, 2 · v, 0)

g =

(
4 0
0 4

)
2.

ϕ2 : (u, v) 7→ u ·
(

1
4
√

3/4
0 0

)
+ v ·

(
1

2· 4
√

3/4

4
√

3/4 0
)

a = 4
√

3/4

g =

(
1
a2

1
2a2

1
2a2

1
4a2

)
Exercise 2 (3 points). The stiffness matrix C ∈ Rn×n was defined in the lecture as
Cij =

∫
S
〈∇φi(x),∇φj(x)〉dx. Show that the entries are equal to

Cij =


− cot(αij)+cot(βij)

2
if (i, j) an edge

−
∑

k 6=iCik if i = j

0 otherwise

The derivation is similar to the one of the mass matrix shown in Exercise Sheet 3.

Solution. Let φ̃i(p) = φi(xk(p)) and e1 = xk(u1), e2 = xk(u2).

1

First case, i 6= j:

Cij =

∫
S

〈∇φi(x),∇φj(x)〉dx

=
∑
k∈T

∫
Tk

〈∇φi(p),∇φj(p)〉dp

∫
Tk

〈∇φi(p),∇φj(p)〉dp =

∫
Tref

〈g−1k ∇φ̃i(p), g
−1
k ∇φ̃j(p)〉

√
det(gk)dp

=
√
det(gk)

(
1 0

)
g−1k

(
0
1

)∫
Tref

1 dp︸ ︷︷ ︸
=1/2

=
1

2

√
det(gk)

det(gk)
g12k

=
1

2

−〈e1, e2〉√
det(gk)

= −1

2

||e1|| · ||e2|| · cos(αij)

2 · area(Tk)

= −1

2

||e1|| · ||e2|| · cos(αij)

||e1|| · ||e2|| · sin(αij)

= −cot(αij)

2

The summands are only non-zero at triangles adjacent to both i and j. See the
lecture slides for a sketch of αij, βij.

Cij =
∑

k∈Ni∩Nj

−cotαij
2

= −cotαij + cot βij
2

Second case, i = j:

Cii =

∫
S

〈∇φi(x),∇φi(x)〉dx

=
∑
k∈T

∫
Tk

||∇φi(p)||2dp

2

∫
Tk

||∇φi(p)||2dp =

∫
Tref

||g−1k ∇φ̃i(p)||
2
√
det(gk) dp

=
√
det(gk)

(
1 0

)
g−1k

(
1
0

)∫
Tref

1 dp

=
||e1||2

4 · area(Tk)

=
w2

2 · w · h
=

w

2 · h
=

1

2
(cot(α) + cot(β))

e1 is the edge opposing vertex i in each triangle. We can write the diagonal
entries as sums over triangles or one can see that the angles showing up are exactly
the same as in the entries Cij but paired up differently (see below).

Cii =
∑
k∈Ni

cotαk + cot βk
2

=
∑

(i,j) edge at i

cotαij + cot βij
2

=
∑
j

Cij

Programming

Exercise 3 (4 points). This exercise will contain the first steps for implementing
the gradient on triangle meshes (V , T). The gradient ∇f of a function f : S → R
can be calculated by taking ∇f = g−1 · ∇f̃ where g is the first fundamental form
and, for a fixed coordinate map x of S, f̃ : U → R is such that f = f̃ ◦ x−1. Since
g = (Dx)>Dx, we start with calculating Dx and then g.

1. Remember we have a coordinate map for each triangle individually, but instead
of being given the map xk for each triangle k we only have the vertex coordi-
nates. Think about how each xk and Dxk looks like. (Tip: They were already
used in Exercise 3.) Implement a function trimesh differential that takes
a triangle mesh and returns a R3×2×k multi-dimensional array representing all
differentials.

3

2. The first fundamental form is constant on each triangle, we can represent
it as a R2×2×k matrix. Write a function trimesh fff that takes the result of
trimesh differential and returns the first fundamental form as a tensor. In
theory multiplication of matrices with more dimensions works the same way
as with two, but it is not implemented in Matlab so you will have to simulate
it with a for loop. The function squeeze will help to return to matrices when
taking slices of the tensor.

3. Calculate the area of each triangle with the first fundamental form and com-
pare your results to the areas you calculated in Exercise 3 (which were probably
done with Heron’s formula).

4

