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Mathematics

Exercise 1 (1 point). Show that the principle curvature can be calculated if the
mean and Gauss curvature are given.

Solution. We have two equations with two unknowns, so we can simply solve for
them. (I dropped the p from the formulars.)

H =
κ1 + κ2

2
K = κ1 · κ2

⇒ κ1 = 2H − κ2
⇒ K = (2H − κ2) · κ2
⇒ κ2 = H ±

√
H2 −K

⇒ κ1 =
K

H ±
√
H2 −K

= H ∓
√
H2 −K

κ1 is always the bigger of both values. ± means the same signs as in κ2 and ∓ the
inverse sign.

Exercise 2 (3 points). Show that the gaussian curvature of the torus in 3D (see
Exercise sheet 2) integrates to zero. Tip: the parametrization and differential of
the torus can be found in the solutions, choose arbitrary values for a, r to simplify
the calculations. (a = 2, r = 1 for example) First, try to find the Gauss Map and
calculate its differential. It suffices to write the Gauss Map as a function N : U → S2.
Then write the differential in an basis of the tangent space (the columns of Dx for
example).

Solution. We use the following parametrization to describe the torus T :

x : (0, 2π)2 → R3, (u, v) 7→

cos(v)(2 + cos(u))
sin(v)(2 + cos(u))

sin(u)


Dx(u) =

− cos(v) sin(u) − sin(v)(2 + cos(u))
− sin(v) sin(u) cos(v)(2 + cos(u))

cos(u) 0


g =

(
1 0
0 (2 + cos(u))2

)
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Notice that, although x does not cover the entire manifold, the uncovered parts have
no area so the integral will not change. First, lets calculate the Gauss map N and
shape operator S because we need them later on to calculate the gauss curvature.
Let (u, v) = x−1(p).

N : T → S2, p 7→ ∂1x(u)× ∂2x(u)

‖∂1x(u)× ∂2x(u)‖
=

 − cos(u) cos(v)(2 + cos(u))
− cos(u) sin(v)(2 + cos(u))

− sin(u)(2 + cos(u))(cos(v)2 + sin(v)2))


‖ · ‖

=

−(2 + cos(u))

cos(u) cos(v)
cos(u) sin(v)

sin(u)


√

cos(u)2 cos(v)2 + cos(u)2 sin(v)2 + sin(u)2

= −

cos(u) cos(v)
cos(u) sin(v)

sin(u)



Sp : TpT → TpT, v 7→ DN(p) =

sin(u) cos(v) sin(v) cos(u)
sin(u) sin(v) − cos(v) cos(u)
− cos(u) 0


We need to choose a basis of TpT to represent DN in. The columns of Dx(u)

span TpT and are also orthogonal (in this case). We need to find a matrix S that
fulfills DN(p) = Dx(u) · S, since the basis is orthogonal:

S = DN(p)>Dx(u) =

(
−1 0

0 − cos(u)
(2+cos(u))

)

The eigenvalues of S are obviously λ1 = −1 and λ2 = − cos(u)
(2+cos(u))

.

∫
T

K(p) dp =

∫ 2π

0

∫ 2π

0

K(x(u, v))
√
det(Dx>Dx) dudv

=

∫ 2π

0

∫ 2π

0

cos(u)

(2 + cos(u))(2 + cos(u))
dudv

=

∫ 2π

0

∫ 2π

0

cos(u) dudv

=

∫ 2π

0

0 dv = 0

Programming

If you want to try out other shapes than the cat, take a look at
http://tosca.cs.technion.ac.il/book/resources data.html under the link TOSCA high-
resolution.
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Exercise 3 (2 points). 1. Use your code from last week (or download the solu-
tion from the homepage) to calculate the gradient on a triangle mesh. The gra-
dient is defined triangle-wise, so you have to implement a function gradient.m

that takes a struct containing vertices and triangles and a function f ∈ Rn

defined vertex-wise and returns the gradient of f as a Rm×3 matrix (one vector
for each triangle). Remember there is a closed formula for the inverse of a 2×2
matrix.

2. Compare the gradient from the previous step with the obvious solution of just
calculating the gradient on the reference triangle and transfering that vector
onto the manifold Dxi∇f̃ . You can use quiver3 to plot 3D-vector fields,
additionally to the vectors it needs theirs origins as an input. You can use
the mass center of each triangle (1/3(a+ b+ c) if (a, b, c) is the triangle). The
command hold on will keep previous plots that you made and plot your new
command over the old one, so you can plot the mesh and two sets of vector
fields in the same plot (the vector fields will also be assigned different colors
automatically).
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