Analysis of Three-Dimensional Shapes Computer Vision Group
F. R. Schmidt, M. Vestner, Z. Lahner Institut fiir Informatik
Summer Semester 2016 Technische Universitat Miinchen

Weekly Exercises 7
Room: 02.09.023
Wed, 15.06.2016, 14:00-16:00
Submission deadline: Tue, 14.06.2016, 23:59 to lachner@in.tum.de

Mathematics: Euler Characteristic

Exercise 1 (2 points). Given a coordinate map z: U — M of a surface M with
respect to a convex coordinate domain U. Assume further that given p; = x(uy) €
M and py = x(ug) € M, the curves vq,7,: [0,1] — U that connect u; and uy are
parametrizations of the geodesics x o v; between p; and py. Show that non-positive
Gaussian curvature K(p) < 0 Vp € M implies 7 = 7.

Solution. Let ¢ = (x0v;)(i),7 €]0,1] and T = (p1, pa, q) a triangle on M connected
by the edges described by (x o 1), (x o 72). Notice that the geodesic curvature on
both is zero and the inner angle at point ¢ is 7. Furthermore, let 3, 8> be the inner
angles between the curves at pq, ps.

We use the Gauss-Bonnet Theorem:

QW:/TK(p)dp—i—/éT/{g(p)dp—l—Zai
Lr

i<3
=0

:/K(p)dp+37r—2ai
T i<3

Z/K(p)dp+3ﬂ—ﬁl—5z—7r

T
= [+ B2 = / K(p)dp
N—— T
<0

>0
This can only hold if 5; + B2 = 0 which implies that v; = 5 and the area of T is
zero which implies also the integral is zero.

Exercise 2 (2 points). 1. Given the triangulation (V| E, F) of a closed surface
of Euler characteristic y. Express |V| and |E| with respect to x and N := |F]|.

2. Show that the Euler characteristic of a surface is |V'| — |E| 4 |F| even if the
faces of the mesh (V) E| F') are not necessarily triangles, but convex polygons.

Solution. 1. Each face has 3 edges, each edge appears twice:
3
e = §f

1

Plug both into the Euler formula:
1
v=x+t §f

2. We can represent convex n-sided polygon as n triangles by putting an addi-
tional vertex in the middle. This which increases the number of faces by n — 1
and the number of edges by n and the number of vertices 1 for each polygon.
k represents any polygon with £ sides.

X=@+> D—(e+>)+ (f+> (k=-1)=v—e+f

k>3 k>3 k>3

This proof is also nice with induction.

Programming: Geodesics

Download the supplementary material 07 from the homepage. It contains a MinHeap
class file, incidenceMatrix.m, sheet7check.m, dijkstra.m and fastmarching.m
with the basic constructions of the algorithms (and some other things to let you
check your solutions). If you do not know how a Heap works, I suggest you make
yourself familiar with it. Cheat sheet for the functionality:

1. MinHeap = MinHeap(int) creates a new instance of the Heap with maximum
size n (and maximum key n)

2. bool = MinHeap.decrease(key, value) decreases the value of the given key,
nothing happens if the key does not exist in the heap or the value is larger
than the previous value, the return value indicates if the heap was changed
during the operation

3. bool = MinHeap.increase(key, value) like decrease basically

4. double = MinHeap.peakKey(key) returns the value of the given key, —1 if
the key is invalid

5. [value, key]l = MinHeap.pop() returns key and minimum value in the heap.
(=1, —1) if the heap is empty

6. MinHeap.push(value, key) adds a new (key, value) tupel to the heap. Noth-
ing happens if the key already exists in the heap

7. bool = MinHeap.isEmpty() returns true if the heap is empty
You can check if your calculations are correct by running the scripts in sheet7check.m.

Exercise 3 (3 points). Implement the geodesic distance and path between two
points a, b on a manifold with the dijkstra algorithm introduced in the lecture. The
file dijkstra.m already contains the cornerstones such that you only have fill in the

dijkstra step and extract the solution. Additionally to the distance, we also want to
get the shortest path. For that we simply need to keep track of the predecessor of
every vertex that resulted in an update of the minimal distance there. In the end,
we need to backtrack through the predecessors from b until we reach a.

Exercise 4 (5 points). Implement the distance map of one point of a manifold
using the fast marching algorithm from the lecture. march.m is meant to include
the update step which is the only real difference to dijkstra.An assumption in the
lecture was that the triangle is aligned to the x-y-plane, the code in march.m already
includes this alignment. If you are getting confused, use the B, R, G sets as in the
lecture but this is in general not necessary and slows down the code. You do not
have to implement the pre-processing step eliminating obtuse triangles.

