
Analysis of Three-Dimensional Shapes Computer Vision Group
F. R. Schmidt, M. Vestner, Z. Lähner Institut für Informatik
Summer Semester 2016 Technische Universität München

Weekly Exercises 8
Room: 02.09.023

Wed, 22.06.2016, 14:00-16:00
Submission deadline: Tue, 21.06.2016, 23:59 to laehner@in.tum.de

Mathematics: LBO spectrum

Exercise 1 (3 points). Consider a shape S ⊂ R3 that is described by coordinate
maps xi : Ui → S and αS ⊂ R3 which is described by yi = α · xi. Show that

1.
area(αS) = α2area(S) (1)

2.

λαSi =
1

α2
λSi (2)

3.

φαSi =
1

α
φSi (3)

where λi, φi denote the eigenvalues and functions of the LBO. Tip: Solve the exer-
cises in the given order. Think about what you can say about mass and stiffness
matrix of αS. You can use the lumped mass matrix for simplicity.

Solution. 1.

area(αS) =

∫
αS

1ds

=

∫
U

1
√

det(gα)dx

=

∫
U

1

√
det

(
〈yu, yu〉 〈yu, yv〉
〈yu, yv〉 〈yv, yv〉

)
dx

=

∫
U

1

√
det

(
〈αxu, αxu〉 〈αxu, αxv〉
〈αxu, αxv〉 〈αxv, αxv〉

)
dx

=

∫
U

1
√

det(α2gS)dx

=

∫
U

1
√
α4 det(gS)dx

= α2

∫
U

1
√

det(gS)dx

= α2area(S)

1

2. First notice that in L = CM−1 the stiffness matrix is not affected by scaling
and Mα = α2MS from the last exercise. Therefore, LS = α2CM−1

α .

LSφS =
α2

α2
LSφS

= α2LαφS = λSφS

⇒ LαφS =
1

α2
λS︸ ︷︷ ︸

=λα

φS

3. Lets recall that if φS is an eigenfunction (as we saw in the last exercise) then
µφS is also an eigenfunction for µ ∈ R, µ 6= 0.

φ>SMSφS = 1

φ>S
1

α2
MαφS = 1(

1

α
φS

)>
Mα

(
1

α
φS

)
︸ ︷︷ ︸

=φα

= 1

Programming: Multi Dimensional Scaling

Download the new supplementary material. It contains an outline for the whole
exercise and code for several side tasks as well as visualizing the solution.

Exercise 2 (5 points). Implement the Multi-Dimensional Scaling approach to find
a correspondence between two shapes. ex8 1.m already contains an outline for the
whole procedure and you can fill in code in mds.m, alignpoints.m and extract matching.m.

1. mds.m should contain the algorithm as explained in the lecture. It takes a
distance matrix D ∈ Rn×n and a dimension to embed in m ∈ N. It should
return the coordinates of each point in Rm as a matrix Z ∈ Rn×m.

The parameters epsilon and maxI control the minimum relative progress (if
you don’t know how to compute it, just skip it) and the maximum number of
iterations.

2. alignpoints.m should align two points clouds Z1, Z2 ⊂ Rm with rigid trans-
formations (i.e. translation and rotation). The result should be two points
sets Ẑ1 = {R1(z + t1)|z ∈ Z1}, Ẑ2 = {R2(z + t2)|z ∈ Z2} that were aligned by
the optimal rigid transformations.

The translations t1, t2 can be found by computing the point clouds’ mean. For
the rotation we suggest to align the principal axes a1, ...am ∈ Rm with the
standard Euclidean axes. Note that since the signs of the principal axes are
not uniquely determined, the visualization code includes sign parameters that
can be altered manually.

2

3. extract matching.m For each z ∈ Ẑ1 find the z′ ∈ Ẑ2 that is its nearest
neighbor. This will give you a matching (z, z′) for each point in Ẑ1. Notice
that using this procedure will not necessarily give you a bijection between both
shapes. You can use visualize matching.m to visualize your results.

The Matlab functions mean and pca might be helpful, for nearest neighbor search
you can use the function knnsearch.

3

