Analysis of 3D Shapes (IN2238)

Frank R. Schmidt
Matthias Vestner

Summer Semester 2016

We are always looking for master and bachelor students!

Please talk to the appointed contact person directly

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction

		1N2238		$\square \square$	
	Schedule	Course Material	Shape		

The lecture Analysis of Three-Dimensional Shapes will be organized as following:
■ Monday Lecture: 10-11 and 11-12 in Room 02.09.023

- Tuesday Lecture: $10-11$ and 11-12 in Room 02.09.023

■ Wednesday Tutorial: 14 -16 in Room 02.09.023

The tutorial combines theoretical and programming assignments:

- Assignment Distribution: Tuesday 11:00-11:15 in Room 02.09.023

■ Theoretical Assignment Due: Tuesday 23:59 per email
■ Assignment Presentation: Wednesday 14-16 in Room 02.09.023

May 2016						
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
					1	
Lecture 5	3 Lecture 6	4 Tutorial 2	5	6	7	8
9 Lecture 7	10 SVV	11 Tutorial 3	12	13	14	15
16	17	18	19	20	21	22
23 Lecture 8	24 Lecture 9	25 Tutorial 4	26	27	28	29
30 Lecture 10	31 Lecture 11					

To achieve the bonus, the following requirements have to be fulfilled:

Theory

- 60% of all theoretical assignments have to be solved. (PDF-Submissions (using $A^{T} E X$) happen only online via email)
- At least one theoretical exercise has to be presented in front of the class.

Programming

- 60% of all programming assignments have to be presented during the tutorial.

To promote team work, we advocate to form groups of two or three students in order to solve and submit the assignments.

Requirements for being admitted to the exam
■ Registration: Students need to be registered prior to the exam: via TUM online.

- Exam: In the week of July, $11^{\text {th }}-15^{\text {th }}$

Participation at the tutorial:
■ Not mandatory, but highly recommended:
Theoretical assignments will help to understand the topics of the lecture.
Programming assignments will help to apply the theory to practical problems.

- Bonus: Active students who solve 60% of the assignments earn a bonus.
- Exam: If one receives a mark between 1.3 and 4.0 in the exam, the mark will be improved by 0.3 resp. 0.4 . Marks of 1.0 or 5.0 cannot be improved.

IN2238 - Analysis of Three-Dimensional Shapes

1. Introduction - 10 / 25

Dr. Frank R. Schmidt

Matthias Vestner

Zorah Lähner

Please do not hesitate to contact us in order to set up an appointment:

- f.schmidt®in.tum.de
- matthias.vestner@in.tum.de
- laehner@in.tum.de

IN2238 - Analysis of Three-Dimensional Shapes

On the internal site of the course page you have access to extra course material:
https://vision.in.tum.de/teaching/ss2016/shape_2238

Password Sh4p3

- Printer friendly slides for each lecture (Available prior to the lecture)
- Assignment Sheets (Available after the Tuesday lecture)
- Solution Sheets (Available after the Wednesday tutorial)

The course page will also be used for extra announcements.

What is a Shape?	What is a Shape?		
Cave Painting Paper Cutting - A shape describes the geometry of an object without relying on a specific location or orientation of this object, i.e., An egg remains an egg, no matter where we put it on a table. - A shape should reflect the human perception of objects: The whole is more than the sum of its parts.	Definition 1 (Kendall, 1977). Shape is all the geometrical information that remains when location, scale and rotational effects are filtered out. In other words two 3D-objects $O_{1}, O_{2} \subset \mathbb{R}^{3}$ are of the same shape if we can find a rotation $R \in \mathrm{SO}(3)$, a translation $T \in \mathbb{R}^{3}$ and a scaling factor $\sigma \in \mathbb{R}_{+}$such that $x \in O_{1} \quad \Leftrightarrow \quad R \cdot(\sigma x)+T \in O_{2}$		
Shape as Equivalence Class of Objects	Uh, Restricted and Extended Shape Notions		
Note that the above mentioned relation between objects defines an equivalence relation: $O_{1} \sim O_{2}: \Leftrightarrow \quad\left[\exists(R, T, \sigma) \in \mathrm{SO}(3) \times \mathbb{R}^{3} \times \mathbb{R}_{+}: x \in O_{1} \Leftrightarrow R \cdot(\sigma x)+T \in O_{2}\right]$ One can easily show that the following holds: $\begin{array}{rlrr} O_{1} \sim O_{1} & & & \text { (Reflexivity) } \\ O_{1} \sim O_{2} & \Leftrightarrow & O_{2} \sim O_{1} & \text { (Symmetry) } \\ O_{1} \sim O_{2}, O_{2} \sim O_{3} & \Rightarrow & O_{1} \sim O_{3} & \text { (Transitivity) } \end{array}$ Every equivalence relation defines an equivalence class of equivalent objects. The equivalence class $[O]:=\left\{O^{\prime} \subset \mathbb{R}^{3} \mid O \sim O^{\prime}\right\}$ of an object $O \subset \mathbb{R}^{3}$ is the shape of this object.	In some applications, we like to differentiate between objects of different sizes. Analogously, we can define the Shape-and-Scale equivalence relation: $O_{1} \sim O_{2} \quad: \Leftrightarrow \quad\left[\exists(R, T) \in \mathrm{SO}(3) \times \mathbb{R}^{3}: x \in O_{1} \Leftrightarrow R \cdot x+T \in O_{2}\right]$ The equivalence class $[O]:=\left\{O^{\prime} \subset \mathbb{R}^{3} \mid O \sim O^{\prime}\right\}$ of an object $O \subset \mathbb{R}^{3}$ is the shape-and-scale of this object. Some authors call also the shape-and-scale of an object their shape. In some applications, we also like to extend the shape equivalence relation in order to be invariant with respect to different "poses",i.e.: A horse is a horse, no matter whether it is standing or galopping.		
IN2z38-A Anaysis of Thee Dimensional Shapes 1. Intodiction - 19 / 25	IN2z3- Analysis of Thee Dinensional Shapes 1. Introtiction - 20 / 25		
\square Banach-Tarski Paradox	Th; $\underset{\substack{\text { Schedile } \\ \text { Course Material }}}{\substack{\text { Open Sets } \\ \text { Shape }}}$		
Theorem 1 (Banach and Tarski, 1924). The 3D ball $B=\left\{x \in \mathbb{R}^{3} \mid\langle x, x\rangle \leqslant 1\right\}$ can be partitioned into finite many sets A_{i}, i.e., $B=\bigsqcup_{i=1}^{k} A_{i}$, which can be rotated to form two copies of B. The proof of this paradox uses a heavy machinery based on set theory. In particular the so called Axiom of Choice is used to create the sets A_{i}. Interestingly, we cannot measure the volume of any of the sets A_{i}. To avoid any similar problem, we are only interested in objects $O \subset \mathbb{R}^{n}$ that are open.	Definition 2 (Open Set). A set $O \subset \mathbb{R}^{n}$ is called open iff $x \in O \quad \Rightarrow \quad \exists \varepsilon>0: B_{\varepsilon}(x) \subset O$ where $B_{\varepsilon}(x):=\left\{y \in \mathbb{R}^{n} \mid\\|x-y\\|<\varepsilon\right\}$ is a ball of radius ε centered at $x \in \mathbb{R}^{n}$. Definition 3 (Relatively Open Set). Given $X \subset \mathbb{R}^{n}$, we call $O \subset X$ relatively open with respect to X iff there exists an open set $\hat{O} \subset \mathbb{R}^{n}$ such that $O=\hat{O} \cap X$ Definition 4 (Topology). Given a subset $X \subset \mathbb{R}^{n}$, we call $\mathcal{T}(X):=\{O \subset X \mid O$ is open with respect to $X\}$ its topology.		
NN2338 - Analysis of Thee Dimensional Shapes			
	What is an Object?		
Definition 5 (Boundary). Given a set $X \subset \mathbb{R}^{n}$, we call $\partial X:=\left\{x \in \mathbb{R}^{n} \mid \forall O \in \mathcal{T}\left(\mathbb{R}^{n}\right): O \cap X \neq \varnothing \wedge O \backslash X \neq \varnothing\right\}$ its boundary. The boundary of \mathbb{R}^{n} is $\partial \mathbb{R}^{n}=\varnothing$. The boundary of the closed interval $[0,1]$ is $\partial[0,1]=\{0,1\}$. The boundary of $[0,1[$ is $\partial[0,1[=\{0,1\}$. The boundary of $] 0,1[$ is $\partial] 0,1[=\{0,1\}$. The boundary of the ball $B^{n}=\left\{x \in \mathbb{R}^{n} \mid\langle x, x\rangle \leqslant 1\right\}$ is $\partial B=\mathbb{S}^{n-1}=\left\{x \in \mathbb{R}^{n} \mid\langle x, x\rangle=1\right\}$.	To define what a shape is, we first need to define an object. Definition 6 (Informal Definition). An object of dimension d is an open subset $X \subset \mathbb{R}^{d}$ such that $\operatorname{dim} \partial X=d-1$. Note that we exclude sets whose boundaries are fractals. Instead, we want to have a boundary with the well-defined dimension $d-1$.		

Shapes

■ Galileo, Discorsi e dimostrazioni matematiche, informo a due nuove scienze attenti alla mecanica i movimenti locali, 1638, appresso gli Elsivirii; Opere VIII. (2)

■ Kendall, The diffusion of shape, 1977, Advances in Applied Probabilities (9), 428-430.
■ Dryden and Mardia, Statistical Shape Analysis, 1998, Wiley, 376 pages.

Set Theoretical Results

- Banach and Tarski, Sur la décomposition des ensembles de points en parties respectivement congruentes, 1924, Fundamenta Mathematica (6), 244-277.
■ Carathéodory, Vorlesungen über reelle Funktionen, 1918, B. G. Teubner, 704 pages.

