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Dimension of Linear Spaces
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Conceptually, we have a very good understanding what a dimension is.
Sometimes, we refer to it as degrees of freedom.

Even for (linear) R-vector spaces, the definition can be quite involved:

Dimension

dim(U) = lBlliIllr |B|
(B5=U

beB

<B>:{zm:2)\b~b,,\eRB}

For linear vector spaces U, it suffices to find a linear bijection ¢ : R? — U in order
to prove that U is a vector space of dimension d.

Here, U can be an arbitrary R-vector space. It does not need to be represented
as a subset of an
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Dimension of Curves Dimension of Curves
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Even though the curve
C:={(z,y) e R?|y =
is not a linear space, we can find a bijection
0:R—C t—(t, %)
that introduces a one-dimensional coordinate ¢ € R to each (z,y) € C.

For what kind of sets C' can we define a “curved” dimension?
Even though the curve

. What kind of functions ¢ guarantee a unique dimension?
C = {(a,y) e Ry = 2} vE d

is not a linear space, we like to think of it as a one-dimensional object. Why?
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Continuous Mappings iy Homeomorphism
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Definition 1 (Open Set). A set O  R" is called open iff
Theorem 1 (Cantor, 1877). Given the interval I = [0, 1], there is a bijection

re0 = Je > 0:B.(z) <O, 01— 1%

where B.(z) := {y € R"| |z — y| < ¢} is a ball of radius ¢ centered at z € R™.

Theorem 2 (Peano, 1890). Given the interval I = [0,1], there is a continuous

Definition 2 (Relatively Open Set). Given a subset X < R", we call O ¢ X e >
bijection ¢ : [ — I-.

relatively open iff there exists an open set O — R™ of R” such that
0=0nX
Definition 4. A bijection ¢: X — Y is called a homeomorphism iff ¢ and !
The set T(X) of all relatively open subsets is called the topology of X. are continuous.

Definition 3 (Continuous Mappings). Given subsets X < R™ and Y < R", we

call a mapping f: X — Y continuous iff i .
Theorem 3 (Brouwer, 1911). The existence of a homeomorphism ¢: R™ — R"

OeT(Y) = 71 0) e T(X) implies m = n.
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Diffeomorphism
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In practice, it is often difficult to check whether a function is continuous. To check
differentiability is on the other hand easier. Thus, we would like to extend the idea
of homeomorphisms to the class of differentiable functions.

Definition 5. A bijection p: X — Y is called a C'*-diffeomorphism iff ¢ and ¢!

are C*-functions, i.e., for all i < k exist the i-th derivatives of these functions and
they are continuous. C'*°-diffeomorphisms are called (smooth) diffeomorphisms.

Problem: While we know how to “extend” the idea of dimensions to R™
non-linearly, we still need to define when C' = R? is a 1D object.

Solution: Concept of manifolds and sub-manifolds.

ds and Shape:

Chart and Atlas
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Definition 6. (M, ¢p) is called an n-dimensional chart of M iff po: My — Uy
is a homeomorphism between the open sets My < M and Uy < R™.

Definition 7. A collection (M, ¢;);c7 of charts is called a C* atlas iff
M = J;ez M; and for any two charts ¢; and ¢;, the mapping ¢; o goj’l is a
C*k-diffeomorphism between ;i (M; n M;) and @;(M; 0 Mj).
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Manifold

Smooth Functions
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Definition 8. A set M with a C* atlas (M;, ¢;),7 is called a (smooth)
manifold.

Definition 9. Given a manifold M, a function f: M — R% is called smooth iff for
all charts (M;, ¢;), the function f o i t: ;(M;) — R® is smooth.

Whether a function is smooth depends very much on the chosen atlas. Therefore,
we are more interested in submanifolds.
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Generalization of R"
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We like to think of n-dimensional manifolds as extensions of the linear space R™.
In order to see this we will define the “manifold” R™.

Let (M;)ez be a collection of open sets M; < R™ that cover R"™. Choices are:

M(il,u-,in) = {x eR"™ }Hx — ZH < \/ﬁ}
My =R"

I=7"
T ={0}

Given these sets, the charts can be choosen as (M;,idas,) and for overlapping
charts, we obtain the diffeomorphism

gpiogogliMiﬁMj *)MiﬁMj
p—=p

With these atlases, we obtain that the “smooth functions” f on the “manifold”
R™ are exactly the functions C*(R").
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Smooth:Submanifold
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Definition 10. A subset M < R" is a (smooth) submanifold of dimension m iff
for every point p € M, there exists a chart (V, ) of R™ such that

m pelV.
B o(MnV)=R"neV).

We call n — m the co-dimension of M.

Note that ¢ is automatically a diffeomorphism. Why?
Note that M is automatically a manifold. Why?
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Submanifold

Implicit Function Theorem
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Theorem 4 (Implicit Function Theorem). Given a C*-mapping F': R™ x R¥ — R¥
and (z0,y0) € R™ x R¥ such that F(xo,y0) = 0 and a%F(xg, yo) is invertible.

Then there exists U € T(R™), V € T(R¥) and ¢: U — V such that

B zoeU, yoeV and o(x0) = yo.
W Forall x € U we have F(z,¢(z)) = 0.
B ¢ is a bijective C*-mapping.
1
B Forallze U we have £op(z) = — L F(z,0(z)).

L%Fu, w(@))]

Theorem 5 (Inverse Function Theorem). Given a C*=mapping f: R¥ — R¥ such
that D f(x0) is of maximal rank for a xg € RE. Then there exists U € T(RF),
V € T(R¥) such that f: U — V is a diffeomorphism and

D () (@) = (DN (@)

Proof. Define F': RF x RF — R¥ with F(z,y) =  — f(y) and apply the Implicit
Function Theorem. |
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Explicit: Submanifolds
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One important example of a submanifold is described by smooth coordinate
mappings z: U — R™

Lemma 1. A subset M < R" together with smooth coordinate mappings
(@i, Us)iez is @ smooth submanifold of dimension m if the following holds:

B All U; are open subsets of R™.
B M =g 2:i(U).
B for all we U, z; is smooth and Dz;(u) € R™™™ is of maximal rank m.

Proof. Given p € M, we choose i € Z and @ € R™ such that p = z;(4).
Since Da;(@) is of maximal rank, we can find a matrix Ag € R™*("=™) such that
A= (Dzi(d) Ap) € R™" is of maximal rank n.
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Explicit: Submanifolds

Tninn
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Proof (Cont.) As a result, we can define the smooth function

¥ : U x RP™ SR™

(UL U V1,5 Upem) —p(u) + A

with det(D (@, 0)) # 0. Using the Inverse Function Theorem proves the
lemma.

Now we can prove that

C = {(z,y) e R?|ly = 2*}

is a manifold of dimension 1. How?
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Implicit,.Submanifolds
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In practice, it is often difficult to define different charts or coordinate functions.
Instead, we like to define the manifold M by formulating certain constraints, e.g.,

§%:= {z e R®|(x,z) = 1}

Lemma 2. Given a function f: R® — R¥ and a regular value c € R, i.e.,
-1
zef ()

Then, M := f~Y(c) is a submanifold of co-dimension k.

=

rank(Df(z)) = k.
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Objects and Shapes
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With these definitions in place, we can finally define what we mean by an object
and a shape

Definition 11 (Object). An object of dimension d is an open subset X < R such
that its boundary B := 0X is a submanifold of dimension d — 1. We will use the
notation O% for the space of all objects of dimension d.

Some authors only study the boundary of an object.

Definition 12 (Shape). Given an equivalence relation ~ of O%, the equivalence
class [O] of an object O € O is its shape. We call the set of all shapes the shape
space 0%/ ~.

For now we will focus on an equivalence relation that uses a combination of
rotation, translation and scaling to define equivalent objects.
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Tangent Space
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Since we want to focus on smooth submanifolds M of dimension m, we like to
approximate the direct vicinity of a point p € M with a linear vector space of
dimension m. This leads to the concept of the tangent space.

Definition 13 (Tangent Space). Let M < R™ be a submanifold of dimension
m < n that is given via coordinate functions (z;,U;)iez. Given i € Z such that
p = z;(u), we define the tangent space 7, M of M at the position p as

T,M := {Dx;(u) - v|Vv € R™} [= Im(Dx;(u))]

Lemma 3 (Tangent Space). The tangent space T,M < R" is a linear subspace
and does not depend on the choice of the choosen chart (x;, U;).

Proof. Excercise. O
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Implicit.Submanifolds

I

Proof. Let pe M < R™. Since Df(p) is of rank k, we can find k columns of
Df(p) that are linear independent. W.l.o.g. we assume that these k columns are
the last k. Thus, the function f: R"* x R¥ — R* satisfies the Implicit Function
Theorem with respect to (zg,y0) = p.

The implicit function ¢: R¥ — R™* defines a coordinate mapping z: R¥ — R™
via z(u) := (u, ¢(u)), which proves the lemma.

Dimension Manifold Submanifold

Tangent Space

Note that the implicit submanifold can be transformed into an explicit submanifold.
Given a point p € M the created coordinate mapping x satisfies

id
D)= (7 EXIn %@)
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Tangent Space

Tangent Space

I
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Lemma 4 (Tangent Space). Let f: R" — R¥ be a smooth function with regular
value c € R¥ and M := f~'(c) the manifold with respect to this value. For every
pe M we have

T,M = {veR"Df(p)-v=0} [: ker(Df(p))]

Proof. The coordinate mapping x that we constructed for a implicetly defined
manifold is Dx(u) = (7[ﬂ(p)l]d,1ﬂ(p)). Using linear algebra, we obtain
oy oz

yeT,M*+ =Im (Dac(u))J‘ = ker (Dac(u)T)
T -T
=0=y — [%(P)] [%(P)] Y2

Choosing y2 = [%5(17)]T - v leads to y; = [%5
T,M =TIm(Df(p)")* = ker(Df(p)).
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(p)]" - v, which proves
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