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Conceptually, we have a very good understanding what a dimension is.
Sometimes, we refer to it as degrees of freedom.

Even for (linear) R-vector spaces, the definition can be quite involved:

dimpUq “ min
BĂUxBy“U

|B|

xBy “
#
x

ˇ̌
ˇ̌
ˇx “

ÿ

bPB
λb ¨ b, λ P RB

+

For linear vector spaces U , it suffices to find a linear bijection Φ : Rd Ñ U in order
to prove that U is a vector space of dimension d.

Here, U can be an arbitrary R-vector space. It does not need to be represented
as a subset of an RN .
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Even though the curve

C :“ tpx, yq P R2|y “ x2u
is not a linear space, we like to think of it as a one-dimensional object. Why?

Dimension of Curves
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Even though the curve

C :“ tpx, yq P R2|y “ x2u
is not a linear space, we can find a bijection

ϕ : R ÑC t ÞÑpt, t2q
that introduces a one-dimensional coordinate t P R to each px, yq P C.
For what kind of sets C can we define a “curved” dimension?

What kind of functions ϕ guarantee a unique dimension?

Continuous Mappings
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Definition 1 (Open Set). A set O Ă Rn is called open iff

x P O ñ Dε ą 0 : Bεpxq Ă O,

where Bεpxq :“ ty P Rn| }x´ y} ă εu is a ball of radius ε centered at x P Rn.

Definition 2 (Relatively Open Set). Given a subset X Ă Rn, we call O Ă X
relatively open iff there exists an open set Ô Ă Rn of Rn such that

O “ Ô XX

The set T pXq of all relatively open subsets is called the topology of X.

Definition 3 (Continuous Mappings). Given subsets X Ă Rm and Y Ă Rn, we
call a mapping f : X Ñ Y continuous iff

O P T pY q ñ f´1pOq P T pXq

Homeomorphism
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Theorem 1 (Cantor, 1877). Given the interval I “ r0, 1s, there is a bijection
ϕ : I Ñ I2.

Theorem 2 (Peano, 1890). Given the interval I “ r0, 1s, there is a continuous
bijection ϕ : I Ñ I2.

Definition 4. A bijection ϕ : X Ñ Y is called a homeomorphism iff ϕ and ϕ´1

are continuous.

Theorem 3 (Brouwer, 1911). The existence of a homeomorphism ϕ : Rm Ñ Rn

implies m “ n.



Diffeomorphism
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In practice, it is often difficult to check whether a function is continuous. To check
differentiability is on the other hand easier. Thus, we would like to extend the idea
of homeomorphisms to the class of differentiable functions.

Definition 5. A bijection ϕ : X Ñ Y is called a Ck-diffeomorphism iff ϕ and ϕ´1

are Ck-functions, i.e., for all i ď k exist the i-th derivatives of these functions and
they are continuous. C8-diffeomorphisms are called (smooth) diffeomorphisms.

Problem: While we know how to “extend” the idea of dimensions to Rn

non-linearly, we still need to define when C Ă R2 is a 1D object.

Solution: Concept of manifolds and sub-manifolds.

Manifold
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ϕ0 ϕi

ϕj

ϕi ˝ ϕ´1
j

Definition 6. pM0, ϕ0q is called an n-dimensional chart of M iff ϕ0 : M0 Ñ U0

is a homeomorphism between the open sets M0 Ă M and U0 Ă Rn.

Definition 7. A collection pMi, ϕiqiPI of charts is called a Ck atlas iff
M “ Ť

iPI Mi and for any two charts ϕi and ϕj , the mapping ϕi ˝ ϕ´1
j is a

Ck-diffeomorphism between ϕjpMi XMjq and ϕipMi XMjq.

Smooth Functions
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ϕi

f

f ˝ ϕ´1
i

Definition 8. A set M with a C8 atlas pMi, ϕiqiPI is called a (smooth)
manifold.

Definition 9. Given a manifold M , a function f : M Ñ Rd is called smooth iff for
all charts pMi, ϕiq, the function f ˝ ϕ´1

i : ϕipMiq Ñ Rd is smooth.

Whether a function is smooth depends very much on the chosen atlas. Therefore,
we are more interested in submanifolds.

Generalization of Rn
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We like to think of n-dimensional manifolds as extensions of the linear space Rn.
In order to see this we will define the “manifold” Rn.

Let pMiqiPI be a collection of open sets Mi Ă Rn that cover Rn. Choices are:

I “Zn Mpi1,...,inq “  
x P Rn

ˇ̌}x´ i} ă ?
n
(

I “t0u M0 “Rn

Given these sets, the charts can be choosen as pMi, idMiq and for overlapping
charts, we obtain the diffeomorphism

ϕi ˝ ϕ´1
j : Mi XMj ÑMi XMj

p ÞÑp

With these atlases, we obtain that the “smooth functions” f on the “manifold”
Rn are exactly the functions C8pRnq.

Submanifold
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V
M

p ϕppq
ϕ

Definition 10. A subset M Ă Rn is a (smooth) submanifold of dimension m iff
for every point p P M , there exists a chart pV, ϕq of Rn such that

■ p P V .
■ ϕpM X V q “ Rm X ϕpV q.
We call n´m the co-dimension of M .

Note that ϕ is automatically a diffeomorphism. Why?
Note that M is automatically a manifold. Why?

Implicit Function Theorem
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Theorem 4 (Implicit Function Theorem). Given a Ck-mapping F : Rm ˆRk Ñ Rk

and px0, y0q P Rm ˆ Rk such that F px0, y0q “ 0 and B
ByF px0, y0q is invertible.

Then there exists U P T pRmq, V P T pRkq and ϕ : U Ñ V such that

■ x0 P U , y0 P V and ϕpx0q “ y0.
■ For all x P U we have F px, ϕpxqq “ 0.
■ ϕ is a bijective Ck-mapping.

■ For all x P U we have B
Bxϕpxq “ ´

”
B

ByF px, ϕpxqq
ı´1 B

BxF px, ϕpxqq.
Theorem 5 (Inverse Function Theorem). Given a Ck-mapping f : Rk Ñ Rk such
that Dfpx0q is of maximal rank for a x0 P Rk. Then there exists U P T pRkq,
V P T pRkq such that f : U Ñ V is a diffeomorphism and
D
`
f´1

˘ pfpxqq “ pDfq´1 pxq
Proof. Define F : Rk ˆ Rk Ñ Rk with F px, yq “ x ´ fpyq and apply the Implicit
Function Theorem.



Explicit Submanifolds
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One important example of a submanifold is described by smooth coordinate
mappings x : U Ñ Rn:

Lemma 1. A subset M Ă Rn together with smooth coordinate mappings
pxi, UiqiPI is a smooth submanifold of dimension m if the following holds:

■ All Ui are open subsets of Rm.
■ M “ Ť

iPI xipUiq.
■ For all u P Ui, xi is smooth and Dxipuq P Rnˆm is of maximal rank m.

Proof. Given p P M , we choose i P I and û P Rm such that p “ xipûq.
Since Dxipûq is of maximal rank, we can find a matrix A0 P Rnˆpn´mq such that
A :“ `

Dxipûq A0

˘ P Rnˆn is of maximal rank n.

Explicit Submanifolds
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Proof (Cont.) As a result, we can define the smooth function

ψ : Ui ˆ Rn´m ÑRn

pu1, . . . , um, v1, . . . , vn´mq ÞÑϕpuq `A ¨ v
with detpDψpû, 0qq ‰ 0. Using the Inverse Function Theorem proves the
lemma.

Now we can prove that

C :“ tpx, yq P R2|y “ x2u
is a manifold of dimension 1. How?

Implicit Submanifolds

Dimension Manifold Submanifold Tangent Space

IN2238 - Analysis of Three-Dimensional Shapes 2. Manifolds and Shapes – 19 / 25

In practice, it is often difficult to define different charts or coordinate functions.
Instead, we like to define the manifold M by formulating certain constraints, e.g.,

S2 :“ tx P R3| xx, xy “ 1u

Lemma 2. Given a function f : Rn Ñ Rk and a regular value c P Rk, i.e.,

x P f´1pcq ñ rankpDfpxqq “ k.

Then, M :“ f´1pcq is a submanifold of co-dimension k.

Implicit Submanifolds
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Proof. Let p P M Ă Rn. Since Dfppq is of rank k, we can find k columns of
Dfppq that are linear independent. W.l.o.g. we assume that these k columns are
the last k. Thus, the function f : Rn´k ˆ Rk Ñ Rk satisfies the Implicit Function
Theorem with respect to px0, y0q “ p.
The implicit function ϕ : Rk Ñ Rn´k defines a coordinate mapping x : Rk Ñ Rn

via xpuq :“ pu, ϕpuqq, which proves the lemma.

Note that the implicit submanifold can be transformed into an explicit submanifold.

Given a point p P M the created coordinate mapping x satisfies

Dxppq “
˜

id

´
”Bf

By ppq
ı´1 Bf

Bx ppq

¸

Objects and Shapes
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With these definitions in place, we can finally define what we mean by an object
and a shape

Definition 11 (Object). An object of dimension d is an open subset X Ă Rd such
that its boundary B :“ BX is a submanifold of dimension d´ 1. We will use the
notation Od for the space of all objects of dimension d.

Some authors only study the boundary of an object.

Definition 12 (Shape). Given an equivalence relation „ of Od, the equivalence
class rOs of an object O P Od is its shape. We call the set of all shapes the shape
space Od{ „.

For now we will focus on an equivalence relation that uses a combination of
rotation, translation and scaling to define equivalent objects.

Tangent Space
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Since we want to focus on smooth submanifolds M of dimension m, we like to
approximate the direct vicinity of a point p P M with a linear vector space of
dimension m. This leads to the concept of the tangent space.

Definition 13 (Tangent Space). Let M Ă Rn be a submanifold of dimension
m ď n that is given via coordinate functions pxi, UiqiPI . Given i P I such that
p “ xipuq, we define the tangent space TpM of M at the position p as

TpM :“ tDxipuq ¨ v|@v P Rmu ““ ImpDxipuqq‰

Lemma 3 (Tangent Space). The tangent space TpM Ă Rn is a linear subspace
and does not depend on the choice of the choosen chart pxi, Uiq.
Proof. Excercise.

Tangent Space
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Lemma 4 (Tangent Space). Let f : Rn Ñ Rk be a smooth function with regular
value c P Rk and M :“ f´1pcq the manifold with respect to this value. For every
p P M we have

TpM :“ tv P Rn|Dfppq ¨ v “ 0u ““ kerpDfppqq‰

Proof. The coordinate mapping x that we constructed for a implicetly defined
manifold is Dxpuq “ ` id

´r Bf
By ppqs´1 Bf

Bx ppq
˘
. Using linear algebra, we obtain

y P TpMK “ Im pDxpuqqK “ ker
`
DxpuqJ˘

ñ0 “ y1 ´
„Bf

Bx ppq
J „Bf

By ppq
´J

y2

Choosing y2 “ r Bf
By ppqsJ ¨ v leads to y1 “ r Bf

Bx ppqsJ ¨ v, which proves

TpM “ ImpDfppqJqK “ kerpDfppqq.
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