Analysis of 3D Shapes (IN2238)

Frank R. Schmidt Matthias Vestner

Summer Semester 2016

2. Manifolds and Shapes	2
Dimension	5
Dimension of Linear Spaces	,
Dimension of Curves	
Dimension of Curves	:
Dimension of Curves	(
Continuous Mappings	7
Homeomorphism	{
Dimension of Curves Dimension of Curves Continuous Mappings Homeomorphism Diffeomorphism.	9
Manifold	1(
Chart and Atlas	11
Smooth Functions	1′
Constrained in \mathbb{Z}^n	12
Generalization of M	13
Submanifold	14
Smooth Submanifold	15
Implicit Function Theorem	16
Explicit Submanifolds.	
EXDICIT SUDMANITORS	1/

	10
Explicit Submanifolds	. 18
Implicit Submanifolds	. 19
Implicit Submanifolds	
Objects and Shapes	
angent Space	22
angent Space	22
angent Space Tangent Space	. 23
Tangent Space	. 24
Literature	. 25

2. Manifolds and Shapes

2 / 25

Dimension 3 / 2

Dimension of Linear Spaces

Conceptually, we have a very good understanding what a **dimension** is. Sometimes, we refer to it as **degrees of freedom**.

Even for (linear) \mathbb{R} -vector spaces, the definition can be quite involved:

$$\dim(U) = \min_{\substack{B \subset U \\ \langle B \rangle = U}} |B|$$
$$\langle B \rangle = \left\{ x \middle| x = \sum_{b \in B} \lambda_b \cdot b, \lambda \in \mathbb{R}^B \right\}$$

For linear vector spaces U, it suffices to find a linear bijection $\Phi: \mathbb{R}^d \to U$ in order to prove that U is a vector space of dimension d.

Here, U can be an arbitrary \mathbb{R} -vector space. It does not need to be represented as a subset of an \mathbb{R}^N .

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes -4/25

Dimension of Curves

Even though the curve

$$C := \{(x, y) \in \mathbb{R}^2 | y = x^2 \}$$

is not a linear space, we like to think of it as a one-dimensional object. Why?

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes -5/25

Dimension of Curves

Even though the curve

$$C := \{(x, y) \in \mathbb{R}^2 | y = x^2 \}$$

is not a linear space, we can find a bijection

$$\varphi \colon \mathbb{R} \to C$$
 $t \mapsto (t, t^2)$

that introduces a one-dimensional coordinate $t \in \mathbb{R}$ to each $(x,y) \in C$.

For what kind of sets C can we define a "curved" dimension?

What kind of functions φ guarantee a unique dimension?

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes – 6 / 25

Continuous Mappings

Definition 1 (Open Set). A set $O \subset \mathbb{R}^n$ is called open iff

$$x \in O$$

$$\Rightarrow$$

$$\exists \varepsilon > 0 : B_{\varepsilon}(x) \subset O,$$

where $B_{\varepsilon}(x):=\{y\in\mathbb{R}^n|\,\|x-y\|<\varepsilon\}$ is a ball of radius ε centered at $x\in\mathbb{R}^n.$

Definition 2 (Relatively Open Set). Given a subset $X \subset \mathbb{R}^n$, we call $O \subset X$ relatively open iff there exists an open set $\hat{O} \subset \mathbb{R}^n$ of \mathbb{R}^n such that

$$O = \hat{O} \cap X$$

The set $\mathcal{T}(X)$ of all relatively open subsets is called the topology of X.

Definition 3 (Continuous Mappings). Given subsets $X \subset \mathbb{R}^m$ and $Y \subset \mathbb{R}^n$, we call a mapping $f: X \to Y$ continuous iff

$$O \in \mathcal{T}(Y)$$

$$\Rightarrow$$

$$f^{-1}(O) \in \mathcal{T}(X)$$

Homeomorphism

Theorem 1 (Cantor, 1877). Given the interval I = [0,1], there is a bijection $\varphi: I \to I^2$.

Theorem 2 (Peano, 1890). Given the interval I = [0,1], there is a continuous bijection $\varphi: I \to I^2$.

Definition 4. A bijection $\varphi \colon X \to Y$ is called a **homeomorphism** iff φ and φ^{-1} are continuous.

Theorem 3 (Brouwer, 1911). The existence of a homeomorphism $\varphi \colon \mathbb{R}^m \to \mathbb{R}^n$ implies m = n.

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes – 8 / 25

Diffeomorphism

In practice, it is often difficult to check whether a function is continuous. To check differentiability is on the other hand easier. Thus, we would like to extend the idea of homeomorphisms to the class of differentiable functions.

Definition 5. A bijection $\varphi \colon X \to Y$ is called a C^k -diffeomorphism iff φ and φ^{-1} are C^k -functions, *i.e.*, for all $i \leqslant k$ exist the *i*-th derivatives of these functions and they are continuous. C^{∞} -diffeomorphisms are called (smooth) diffeomorphisms.

Problem: While we know how to "extend" the idea of dimensions to \mathbb{R}^n non-linearly, we still need to define when $C \subset \mathbb{R}^2$ is a 1D object.

Solution: Concept of manifolds and sub-manifolds.

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes – 9 / 25

 $\textbf{Manifold} \hspace{2cm} 10 \hspace{0.1cm} / \hspace{0.1cm} 25$

Chart and Atlas

Definition 6. (M_0, φ_0) is called an *n*-dimensional chart of M iff $\varphi_0 \colon M_0 \to U_0$ is a homeomorphism between the open sets $M_0 \subset M$ and $U_0 \subset \mathbb{R}^n$.

Definition 7. A collection $(M_i, \varphi_i)_{i \in \mathcal{I}}$ of charts is called a C^k atlas iff $M = \bigcup_{i \in \mathcal{I}} M_i$ and for any two charts φ_i and φ_j , the mapping $\varphi_i \circ \varphi_j^{-1}$ is a C^k -diffeomorphism between $\varphi_j(M_i \cap M_j)$ and $\varphi_i(M_i \cap M_j)$.

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes $-11\ /\ 25$

Smooth Functions

Definition 8. A set M with a C^{∞} atlas $(M_i, \varphi_i)_{i \in \mathcal{I}}$ is called a (smooth) manifold.

Definition 9. Given a manifold M, a function $f: M \to \mathbb{R}^d$ is called **smooth** iff for all charts (M_i, φ_i) , the function $f \circ \varphi_i^{-1} : \varphi_i(M_i) \to \mathbb{R}^d$ is smooth.

Whether a function is smooth depends very much on the chosen atlas. Therefore, we are more interested in submanifolds.

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes -12/25

Generalization of \mathbb{R}^n

We like to think of n-dimensional manifolds as extensions of the linear space \mathbb{R}^n . In order to see this we will define the "manifold" \mathbb{R}^n .

Let $(M_i)_{i\in\mathcal{I}}$ be a collection of open sets $M_i\subset\mathbb{R}^n$ that cover \mathbb{R}^n . Choices are:

$$\mathcal{I} = \mathbb{Z}^n$$

$$M_{(i_1,\dots,i_n)} = \left\{ x \in \mathbb{R}^n \left| \|x - i\| < \sqrt{n} \right. \right\}$$

$$\mathcal{I} = \{0\}$$

$$M_0 = \mathbb{R}^n$$

Given these sets, the charts can be choosen as (M_i,id_{M_i}) and for overlapping charts, we obtain the diffeomorphism

$$\varphi_i \circ \varphi_j^{-1} \colon M_i \cap M_j \to M_i \cap M_j$$

$$p \mapsto p$$

With these atlases, we obtain that the "smooth functions" f on the "manifold" \mathbb{R}^n are exactly the functions $C^{\infty}(\mathbb{R}^n)$.

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes – 13 / 25

Submanifold 14 / 25

Smooth Submanifold

Definition 10. A subset $M \subset \mathbb{R}^n$ is a (smooth) submanifold of dimension m iff for every point $p \in M$, there exists a chart (V, φ) of \mathbb{R}^n such that

- $p \in V$.

We call n-m the **co-dimension** of M.

Note that φ is automatically a diffeomorphism. Why? Note that M is automatically a manifold. Why?

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes – 15 / 25

Implicit Function Theorem

Theorem 4 (Implicit Function Theorem). Given a C^k -mapping $F: \mathbb{R}^m \times \mathbb{R}^k \to \mathbb{R}^k$ and $(x_0, y_0) \in \mathbb{R}^m \times \mathbb{R}^k$ such that $F(x_0, y_0) = 0$ and $\frac{\partial}{\partial u} F(x_0, y_0)$ is invertible.

Then there exists $U \in \mathcal{T}(\mathbb{R}^m)$, $V \in \mathcal{T}(\mathbb{R}^k)$ and $\varphi \colon U \to V$ such that

- \blacksquare $x_0 \in U$, $y_0 \in V$ and $\varphi(x_0) = y_0$.
- For all $x \in U$ we have $F(x, \varphi(x)) = 0$.
- lacktriangle φ is a bijective C^k -mapping.

For all $x \in U$ we have $\frac{\partial}{\partial x} \varphi(x) = -\left[\frac{\partial}{\partial y} F(x, \varphi(x))\right]^{-1} \frac{\partial}{\partial x} F(x, \varphi(x))$. Theorem 5 (Inverse Function Theorem). Given a C^k -mapping $f \colon \mathbb{R}^k \to \mathbb{R}^k$ such that $Df(x_0)$ is of maximal rank for a $x_0 \in \mathbb{R}^k$. Then there exists $U \in \mathcal{T}(\mathbb{R}^k)$, $V \in \mathcal{T}(\mathbb{R}^k)$ such that $f \colon U \to V$ is a diffeomorphism and $D\left(f^{-1}\right)(f(x)) = (Df)^{-1}(x)$

Proof. Define $F: \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}^k$ with F(x,y) = x - f(y) and apply the *Implicit Function Theorem*.

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes - 16 / 25

Explicit Submanifolds

One important example of a submanifold is described by smooth coordinate mappings $x: U \to \mathbb{R}^n$:

Lemma 1. A subset $M \subset \mathbb{R}^n$ together with smooth coordinate mappings $(x_i, U_i)_{i \in \mathcal{I}}$ is a smooth submanifold of dimension m if the following holds:

- \blacksquare All U_i are open subsets of \mathbb{R}^m .
- $\blacksquare M = \bigcup_{i \in \mathcal{T}} x_i(U_i).$
- For all $u \in U_i$, x_i is smooth and $Dx_i(u) \in \mathbb{R}^{n \times m}$ is of maximal rank m.

Proof. Given $p \in M$, we choose $i \in \mathcal{I}$ and $\hat{u} \in \mathbb{R}^m$ such that $p = x_i(\hat{u})$.

Since $Dx_i(\hat{u})$ is of maximal rank, we can find a matrix $A_0 \in \mathbb{R}^{n \times (n-m)}$ such that $A := (Dx_i(\hat{u}) \mid A_0) \in \mathbb{R}^{n \times n}$ is of maximal rank n.

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes - 17 / 25

Explicit Submanifolds

Proof (Cont.) As a result, we can define the smooth function

$$\psi: U_i \times \mathbb{R}^{n-m} \to \mathbb{R}^n$$
$$(u_1, \dots, u_m, v_1, \dots, v_{n-m}) \mapsto \varphi(u) + A \cdot v$$

with $det(D\psi(\hat{u},0)) \neq 0$. Using the *Inverse Function Theorem* proves the lemma.

Now we can prove that

$$C := \{(x, y) \in \mathbb{R}^2 | y = x^2 \}$$

is a manifold of dimension 1. How?

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes - 18 / 25

Implicit Submanifolds

In practice, it is often difficult to define different charts or coordinate functions. Instead, we like to define the manifold M by formulating certain constraints, e.g.,

$$\mathbb{S}^2 := \{ x \in \mathbb{R}^3 | \langle x, x \rangle = 1 \}$$

Lemma 2. Given a function $f: \mathbb{R}^n \to \mathbb{R}^k$ and a regular value $c \in \mathbb{R}^k$, i.e.,

$$x \in f^{-1}(c)$$

$$\Rightarrow$$

$$\operatorname{rank}(Df(x)) = k.$$

Then, $M := f^{-1}(c)$ is a submanifold of co-dimension k.

Implicit Submanifolds

Proof. Let $p \in M \subset \mathbb{R}^n$. Since Df(p) is of rank k, we can find k columns of Df(p) that are linear independent. W.l.o.g. we assume that these k columns are the last k. Thus, the function $f: \mathbb{R}^{n-k} \times \mathbb{R}^k \to \mathbb{R}^k$ satisfies the *Implicit Function Theorem* with respect to $(x_0, y_0) = p$. The implicit function $\varphi: \mathbb{R}^k \to \mathbb{R}^{n-k}$ defines a coordinate mapping $x: \mathbb{R}^k \to \mathbb{R}^n$ via $x(u) := (u, \varphi(u))$, which proves the lemma.

Note that the implicit submanifold can be transformed into an explicit submanifold.

Given a point $p \in M$ the created coordinate mapping x satisfies

$$Dx(p) = \begin{pmatrix} id \\ -\left[\frac{\partial f}{\partial y}(p)\right]^{-1} \frac{\partial f}{\partial x}(p) \end{pmatrix}$$

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes - 20 / 25

Objects and Shapes

With these definitions in place, we can finally define what we mean by an object and a shape

Definition 11 (Object). An **object** of dimension d is an open subset $X \subset \mathbb{R}^d$ such that its boundary $B := \partial X$ is a submanifold of dimension d-1. We will use the notation \mathcal{O}^d for the space of all objects of dimension d.

Some authors only study the boundary of an object.

Definition 12 (Shape). Given an equivalence relation \sim of \mathcal{O}^d , the equivalence class [O] of an object $O \in \mathcal{O}^d$ is its shape. We call the set of all shapes the shape space \mathcal{O}^d/\sim .

For now we will focus on an equivalence relation that uses a combination of rotation, translation and scaling to define equivalent objects.

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes – 21 / 25

Tangent Space 22 / 25

Tangent Space

Since we want to focus on smooth submanifolds M of dimension m, we like to approximate the direct vicinity of a point $p \in M$ with a linear vector space of dimension m. This leads to the concept of the tangent space.

Definition 13 (Tangent Space). Let $M \subset \mathbb{R}^n$ be a submanifold of dimension $m \leq n$ that is given via coordinate functions $(x_i, U_i)_{i \in \mathcal{I}}$. Given $i \in \mathcal{I}$ such that $p = x_i(u)$, we define the **tangent space** T_pM of M at the position p as

$$T_p M := \{ Dx_i(u) \cdot v | \forall v \in \mathbb{R}^m \}$$
 $\left[= \operatorname{Im}(Dx_i(u)) \right]$

Lemma 3 (Tangent Space). The tangent space $T_pM \subset \mathbb{R}^n$ is a linear subspace and does not depend on the choice of the choosen chart (x_i, U_i) .

Proof. Excercise.

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes - 23 / 25

Tangent Space

Lemma 4 (Tangent Space). Let $f: \mathbb{R}^n \to \mathbb{R}^k$ be a smooth function with regular value $c \in \mathbb{R}^k$ and $M := f^{-1}(c)$ the manifold with respect to this value. For every $p \in M$ we have

$$T_p M := \{ v \in \mathbb{R}^n | Df(p) \cdot v = 0 \}$$
 $\left[= \ker(Df(p)) \right]$

Proof. The coordinate mapping x that we constructed for a implicetly defined manifold is $Dx(u) = \binom{\mathrm{id}}{-[\frac{\partial f}{\partial y}(p)]^{-1}\frac{\partial f}{\partial x}(p)}$. Using linear algebra, we obtain

$$y \in T_p M^{\perp} = \operatorname{Im} (Dx(u))^{\perp} = \ker (Dx(u)^{\top})$$

 $\Rightarrow 0 = y_1 - \left[\frac{\partial f}{\partial x}(p)\right]^{\top} \left[\frac{\partial f}{\partial y}(p)\right]^{-\top} y_2$

Choosing $y_2 = [\frac{\partial f}{\partial y}(p)]^\top \cdot v$ leads to $y_1 = [\frac{\partial f}{\partial x}(p)]^\top \cdot v$, which proves $T_p M = \operatorname{Im}(Df(p)^\top)^\perp = \ker(Df(p))$.

Literature

Dimension

- Peano, Sur une courbe, qui remplit toute une aire plane, 1890, Math. Annalen (36), 157–160.
- Brouwer, Beweis der Invarianz der Dimensionenzahl, 1911, Math. Annalen (70), 161–165.

Smooth Manifolds

■ Poincaré, Analysis Situs, 1895, Journal de l'École Polytechnique.

IN2238 - Analysis of Three-Dimensional Shapes

2. Manifolds and Shapes – 25 / 25