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Dimension of Linear Spaces

Conceptually, we have a very good understanding what a dimension is.
Sometimes, we refer to it as degrees of freedom.

Even for (linear) R-vector spaces, the definition can be quite involved:

dim(U) = ]rgnirUl | B|
(B=U

<B>:{xx:ZAb-b,AeRB}

beB
For linear vector spaces U, it suffices to find a linear bijection ® : R? — U in order to prove that U is a vector space of dimension d.

Here, U can be an arbitrary R-vector space. It does not need to be represented as a subset of an R".
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Dimension of Curves

Even though the curve

C:={(z,y) € R?|y = 2%}

is not a linear space, we like to think of it as a one-dimensional object. Why?
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Dimension of Curves

Even though the curve
C:={(z,y) € R?|y = 2%}
is not a linear space, we can find a bijection
©: R —-C t > (t,t%)
that introduces a one-dimensional coordinate ¢t € R to each (z,y) € C.
For what kind of sets C' can we define a “curved” dimension?

What kind of functions ¢ guarantee a unique dimension?
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Continuous Mappings

Definition 1 (Open Set). A set O < R" is called open iff
xeO = Je > 0: B:(x) O,
where B.(z) := {y € R"| |z — y| < €} is a ball of radius ¢ centered at x € R™.
Definition 2 (Relatively Open Set). Given a subset X < R", we call O c X relatively open iff there exists an open set O < R” of R" such that
0=0nX
The set 7(X) of all relatively open subsets is called the topology of X.
Definition 3 (Continuous Mappings). Given subsets X < R™ and Y < R", we call a mapping f: X — Y continuous iff

OeT(Y) = f~H0) e T(X)
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Homeomorphism

Theorem 1 (Cantor, 1877). Given the interval I = [0,1], there is a bijection ¢ : I — I°.

Theorem 2 (Peano, 1890). Given the interval I = [0, 1], there is a continuous bijection ¢ : I — I2.

1

Definition 4. A bijection ¢: X — Y is called a homeomorphism iff ¢ and =" are continuous.

Theorem 3 (Brouwer, 1911). The existence of a homeomorphism ¢: R™ — R™ implies m = n.
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Diffeomorphism

In practice, it is often difficult to check whether a function is continuous. To check differentiability is on the other hand easier. Thus, we would like to
extend the idea of homeomorphisms to the class of differentiable functions.

Definition 5. A bijection ¢: X — Y is called a C*-diffeomorphism iff ¢ and ¢! are C*-functions, i.e., for all i < k exist the i-th derivatives of these
functions and they are continuous. C*-diffeomorphisms are called (smooth) diffeomorphisms.

Problem: While we know how to “extend” the idea of dimensions to R™ non-linearly, we still need to define when C' R2isa 1D object.

Solution: Concept of manifolds and sub-manifolds.
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Chart and Atlas

Definition 6. (M, ¢g) is called an n-dimensional chart of M iff ¢o: My — Uy is a homeomorphism between the open sets My < M and Uy < R".

Definition 7. A collection (M;, p;);c7 of charts is called a C* atlas iff M = Uiez M; and for any two charts ¢; and ¢;, the mapping ¢; o 30;1 is a
C*-diffeomorphism between ©;i(M; n Mj) and @;(M; n M;).
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Smooth Functions

Definition 8. A set M with a C® atlas (M;, ;)7 is called a (smooth) manifold.
Definition 9. Given a manifold M, a function f: M — R? is called smooth iff for all charts (M;, ¢;), the function f o ;*: ;(M;) — R? is smooth.

Whether a function is smooth depends very much on the chosen atlas. Therefore, we are more interested in submanifolds.
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Generalization of R"

We like to think of n-dimensional manifolds as extensions of the linear space R™. In order to see this we will define the “manifold” R".
Let (M;);cz be a collection of open sets M; — R™ that cover R™. Choices are:

7=7" M, ={z e R ||z —i] <+/n}
7 ={0} My =R"

Given these sets, the charts can be choosen as (M;,id,s,) and for overlapping charts, we obtain the diffeomorphism
90i090;1: MiﬁMj —>MiﬁMj
pr—p

With these atlases, we obtain that the “smooth functions” f on the “manifold” R™ are exactly the functions C*(R").
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Smooth Submanifold

I~
~—

Vv
&,
U @

Definition 10. A subset M < R™ is a (smooth) submanifold of dimension m iff for every point p € M, there exists a chart (V,¢) of R™ such that

m pelV.
B oMnV)=R"neplV).

We call n — m the co-dimension of M.

Note that ¢ is automatically a diffeomorphism. Why?
Note that M is automatically a manifold. Why?
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Implicit Function Theorem

0
oy

Theorem 4 (Implicit Function Theorem). Given a C*-mapping F: R™ x R¥ — R* and (g, 10) € R™ x R* such that F(xq,y0) = 0 and 2 F(x¢,o) is

invertible.
Then there exists U € T(R™), V e T(R¥) and p: U — V such that

B zoeU,yoeV and p(xy) = yo.

B fForall z € U we have F(z,¢(x)) = 0.

B ¢ is a bijective C*-mapping. .

B forall z € U we have %(p(x) =— L%F(m, w(x))] %F(m, o(x)).

Theorem 5 (Inverse Function Theorem). Given a C*-mapping f: R*¥ — R¥ such that D f(xq) is of maximal rank for a o € R¥. Then there exists
U e T(RF), VeT(RF) such that f: U — V is a diffeomorphism and D (f~1) (f(z)) = (D)~ (x)

Proof. Define F': RF x R¥ — R* with F(x,y) = = — f(y) and apply the Implicit Function Theorem. O
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Explicit Submanifolds

One important example of a submanifold is described by smooth coordinate mappings x: U — R™:

Lemma 1. A subset M < R" together with smooth coordinate mappings (z;, U;)icz is a smooth submanifold of dimension m if the following holds:

B Al U; are open subsets of R™.
m M= UiEI .I‘Z(UZ)
B For allu e U;, x; is smooth and Dz;(u) € R"*™ s of maximal rank m.

Proof. Given p e M, we choose i € Z and @ € R™ such that p = x;(4).
Since Du;(12) is of maximal rank, we can find a matrix Ag € R"*("~™) such that A := (Dzi(6) Ag) € R™*™ is of maximal rank n.

IN2238 - Analysis of Three-Dimensional Shapes 2. Manifolds and Shapes — 17 / 25

11



Explicit Submanifolds

Proof (Cont.) As a result, we can define the smooth function

W U; x R7™™ LR"

(Ul,...,um,Ul,...,'Un_m) Hg@(u) +A-v

with det(D(4,0)) # 0. Using the Inverse Function Theorem proves the lemma. O

Now we can prove that
C = {(x,y) € Ry = 2}

is a manifold of dimension 1. How?
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Implicit Submanifolds

In practice, it is often difficult to define different charts or coordinate functions. Instead, we like to define the manifold M by formulating certain
constraints, e.g.,

S?:= {z e R3|(z,z) = 1}

Lemma 2. Given a function f: R" — R* and a regular value c e R*, ie.,
re f ) = rank(Df(z)) = k.

Then, M := f~1(c) is a submanifold of co-dimension k.

12
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Implicit Submanifolds

Proof. Let pe M < R™. Since D f(p) is of rank k, we can find k columns of D f(p) that are linear independent. W.l.o.g. we assume that these k columns
are the last k. Thus, the function f: R"~* x R¥ — R satisfies the Implicit Function Theorem with respect to (zg,yo) = p.
The implicit function ¢: R¥ — R defines a coordinate mapping z: R¥ — R" via x(u) := (u, ¢(u)), which proves the lemma.

Note that the implicit submanifold can be transformed into an explicit submanifold.

Given a point p € M the created coordinate mapping x satisfies
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Objects and Shapes

With these definitions in place, we can finally define what we mean by an object and a shape

Definition 11 (Object). An object of dimension d is an open subset X < R? such that its boundary B := 0X is a submanifold of dimension d — 1. We will
use the notation O% for the space of all objects of dimension d.

Some authors only study the boundary of an object.

Definition 12 (Shape). Given an equivalence relation ~ of O%, the equivalence class [O] of an object O € O is its shape. We call the set of all shapes the
shape space 0%/ ~.

For now we will focus on an equivalence relation that uses a combination of rotation, translation and scaling to define equivalent objects.
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Tangent Space
Since we want to focus on smooth submanifolds M of dimension m, we like to approximate the direct vicinity of a point p € M with a linear vector space of
dimension m. This leads to the concept of the tangent space.

Definition 13 (Tangent Space). Let M < R”™ be a submanifold of dimension m < n that is given via coordinate functions (x;, U;);ez. Given i € Z such
that p = z;(u), we define the tangent space 7,)/ of M at the position p as

T,M := {Dz;(u) - v[yv e R™}  [=Im(Da;(u))]

Lemma 3 (Tangent Space). The tangent space T, M < R" is a linear subspace and does not depend on the choice of the choosen chart (z;, U;).

Proof. Excercise. O
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Tangent Space

Lemma 4 (Tangent Space). Let f: R” — R* be a smooth function with regular value c € R and M := f~1(c) the manifold with respect to this value.
For every p e M we have

T,M = (v e R'Df(p) v =0}  [=ker(Df(p))]

Proof. The coordinate mapping = that we constructed for a implicetly defined manifold is Dz (u) = (7[6’_f(p)i]d_16_(p)). Using linear algebra, we obtain
oy oz

yeT,M* =TIm (Da(u))* = ker (D:J:(u)T)

=0=y — [%(M]T [g—z(p)]_T Y2

Choosing yo = [‘;—Z];(]D)]T -v leads to y; = [‘;—J;(p)]T - v, which proves T,M = Im(Df(p)")* = ker(Df(p)).

15
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