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While the concept of the derivative or differential is nowadays one of the basic
concepts in modern mathematics, it took a while to find a clean mathematical
definition.

The notation dy
dx is due to Leibniz who called dx and dy an “infinitely small

change of” x resp. y.

In 1924, Courant mentioned that the idea of the differential as infinite small
expression “lacks any meaning” and is therefore “useless”.

The modern notion of derivatives and differential is due to Cauchy and
Weierstraß, which we want to revise in order to extend it later to smooth
mappings between manifolds.

Derivative according to Cauchy

Differential Push-Forward Curvature of 2D Objects

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 5 / 24

f

x0 x0 ` h

The derivative f 1px0q of a function f : R Ñ R at the position x0 P R is

f 1px0q :“ lim
hÑ0

fpx0 ` hq ´ fpx0q
h

While this is a working mathematical definition, it is a bit difficult to extend it to
arbitrary functions f : Rn Ñ Rm, since we cannot “divide by vectors”.

Differential according to Weierstraß
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fpx0 ` hq
fpx0q ` Lrhs

r

x0x0 ` h h

rphq

rphq
|h|

Given a function f : R Ñ R and a postion x0 P R, its differential Dfpx0q is the
unique linear mapping L : R Ñ R such that

fpx0 ` hq “fpx0q ` Lrhs ` rphq
lim
hÑ0

rphq
|h| “0

Jacobi Matrix
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Let f : Rm Ñ Rn be a differentiable function and x0 P Rm. The differential

Dfpx0q : Rm Ñ Rn

is a linear mapping.

Using the canonical bases te1, . . . , emu for Rm and te1, . . . , enu for Rn, Dfpx0q
can be written in matrix form, the Jacobi matrix

Dfpx0qrhs “ J ¨ h J “

¨
˚̋
J1,1 ¨ ¨ ¨ J1,m
...

...
Jn,1 ¨ ¨ ¨ Jn,m

˛
‹‚

with

Ji,j “ xei, J ¨ ejy “ xei, Dfpx0qrejsy “ lim
hÑ0

f ipx0 ` h ¨ ejq ´ f ipx0q
h

“ Bjf ipx0q

Chain Rule
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Let f : Rm Ñ Rn and g : Rk Ñ Rm be differentiable functions. Then we have

pf ˝ gqpx0 ` hq “f pgpx0q ` Dgpx0qrhs ` rgphqq
“pf ˝ gqpx0q ` Dfpgpx0qq rDgpx0qrhs ` rgphqs `
rf pDgpx0qrhs ` rgphqq

“pf ˝ gqpx0q ` Dfpgpx0qq rDgpx0qrhss ` rphq
Thus we have

Dpf ˝ gqpx0q “ Dfpgpx0qq˝Dgpx0q



Chain Rule (Example)
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Let g1, g2 : Rm Ñ Rn and f : Rn ˆ Rn Ñ Rn with fpx, yq :“ x ` y, we have

Dpg1 ` g2qpx0q “Dpf ˝ gqpx0q “ Dfpgpx0qq ¨ Dgpx0q
“ `

id id
˘ ¨

ˆ
Dg1px0q
Dg2px0q

˙
“ Dg1px0q ` Dg2px0q

Let g1, g2 : Rm Ñ R and f : R ˆ R Ñ R with fpx, yq :“ x ¨ y, we have

Dpg1 ¨ g2qpx0q “Dpf ˝ gqpx0q “ Dfpgpx0qq ¨ Dgpx0q
“ `

g2px0q g1px0q˘ ¨
ˆ
Dg1px0q
Dg2px0q

˙

“Dg1px0q ¨ g2px0q ` Dg2px0q ¨ g1px0q

Interpretation of the Differential
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Given a function f : Rm Ñ Rn and a position p P Rm, the equation

fpp ` vq “fppq ` Dfppqrvs ` rpvq
can be interpreted as following:

■ p describes a point in the space on which f is defined,
■ v describes the direction in which we change the point p
■ Dfppqrvs describes the direction in which f changes if we change the point p

in the direction v.

For vector spaces, there is no distinction between points and directions. For
manifolds M , points p will be on the manifold and directions on the tangent space
TpM .

Push-Forward

Differential Push-Forward Curvature of 2D Objects
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Given a point p P M of a d-dimensional submanifold M Ă Rn, we can represent a
tangent vector v P TpM as a curve c : p´ε, εq Ñ M with cp0q “ p.

To see this, let us look at the manifold from the point of view of a coordinate
mapping x : U Ñ M with 0 P U Ă Rd and xp0q “ p.

Since v P TpM “ ImpDxp0qq, we know that there is an h P Rd such that
Dxp0qrhs “ v.

Using

c : p´ε, εq Ñ M cptq “ x pt ¨ hq ,
we have

Dcp0q “ Dxp0 ¨ hq ¨ h “ v.

Alternative Definition of Tangent Vectors
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Given a point p P M of a d-dimensional submanifold M Ă Rn, we define

CpM :“ tc : p´ε, εq Ñ M |Dε ą 0 : c is smooth and cp0q “ pu.

The goal is to define TpM by defining an equivalence relation on CpM :

c1 „ c2 :ô Dc1p0q “ Dc2p0q,
It is easy to check that „ satisfies reflexivity, symmetry and transitivity.

It turns out TpM “ CpM{ „, which provides us with an alternative definition for
the tangent space TpM .

The advantage of this rather theoretical definition is that for any v P TpM we can
choose a curve c P v that passes through p and vice versa, i.e., any curve c that
passes through a point p defines a tangent vector v :“ rcs.

Differential as Push-Forward
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Given two submanifolds M and N as well as a function f : M Ñ N . For p P M
and q “ fppq P N , the differential Dfppq is the push-forward

Dfppq : TpM ÑTqN

rcs ÞÑrf ˝ cs

Assuming that xp : Up Ñ M is a coordinate mapping for p “ xpp0q and
xq : Uq Ñ N is a coordinate mapping for q “ xqp0q, the push-forward definition
becomes

Dfppqrvs “ B
Btpxq ˝ x´1

q ˝ f ˝ xpqpt ¨ hq
ˇ̌
ˇ̌
t“0

,

where v “ Dxpp0qrhs.
It is easy to show that the push-forward is a linear mapping. Excercise.

Coordinate Interpretation
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Given coordinate mappings xp : Up Ñ M and xq : Uq Ñ N with p “ xpp0q and
q “ fppq “ xqp0q, the differential becomes

Dfppqrvs “ B
Btpxq ˝ x´1

q ˝ f ˝ xpqpt ¨ hq
ˇ̌
ˇ̌
t“0

.

If we were to apply the chain rule, we would obtain

Dfppqrvs “ Dpxqqpx´1pqqq ¨ Dpx´1
q qpqq ¨ Dfppq ¨ Dxpp0q ¨ h

■ Dxpp0q ¨ h defines the tangent vector v P TpM .
■ Dfppq is the differential of f ignoring the submanifolds M and N .
■ Dpx´1

q qpqq is the pseudo-inverse of Dpxqqpx´1
q pqqq.

■ Dpxqqpx´1pqqq ¨ Dpx´1
q qpqq projects a vector onto TqN .

What is a Matrix?
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Linear mappings are commonly represented by matrices. We want to emphasize
the difference between a matrix and a linear mapping.

Given an m-dimensional R-vector space X, an n-dimensional R-vector space Y
and a linear mapping L : X Ñ Y , we can represent L by finite many scalars.

To this end, let BX “ tx1, . . . , xmu and BY “ ty1, . . . , ynu bases of X and Y
respectively. Then we know that for each xj P BX we have

Lpxjq “
nÿ

i“1

aijyi.

for some aij P R.

We write this aij in a matrix A and call A “ MBX
BY

pLq P Rnˆm the representing
matrix of L with respect to the basis BX and BY .



Matrix of the Differential
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Given two submanifolds M and N as well as a function f : M Ñ N . For p P M
and q “ fppq P N , the differential Dfppq : TpM Ñ TqN is a linear mapping, but in
general we do not have a canonical matrix representation.

This means that any basis Bp of TpM and Bq of TqN would define a different

matrix MBp

Bq
pDfppqq P Rnˆm with n “ dimpNq and m “ dimpMq.

Since TpM “ ImpDxp0qq, Bp “ tDxp0qre1s, . . . , Dxp0qremsu would be a natural
way of defining a basis of TpM . Nonetheless, the resulting matrix would then
depend on the coordinate mappings xp and xq that we choose for p P M and
q P N respectively.

While there is no unique matrix that describes the differential, it is important to
note that rankDfppq is independent of the choosen coordinate mappings.

Curvature of 2D Objects
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Given a 2D object O and its boundary, the 1D submanifold M :“ BO, we like to
define the normal vector nppq for each point p P M .

Given a coordinate mapping x : U Ñ M with xp0q “ p, we have
TpM “ ImpDxp0qq and a normal vector might be defined via

nppq “ 1

}Dxp0q}
ˆ`Dx2p0q

´Dx1p0q
˙

P S1

Since M is of codimension 1, nppq is up to the sign uniquely defined.

Thus, we have a smooth mapping

n : M Ñ S1

that defines a unique normal vector field of M . Why?

Differential of the Normal Mapping
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Given a point p P M of M Ă R2, we have

Dnppq : TpM Ñ TnppqS1.

Since we have

TnppqS1 “ nppqK “ TpM,

we know that Dnppq is an endomorphism, i.e., a linear mapping that maps the
vector space TpM onto itself.

Because dimTpM “ 1, Dnppq maps a vector v P TpM to κppq ¨ v.
This scalar value κppq P R is called the curvature of M at the position p.

Derivative of the Normal Field
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If we take the derivative of N “ pN1, N2q : U Ñ R2, t ÞÑ n ˝ xptq, we obtain

B
BtN

1pxptqq “ B
Bt

9x2ptq
} 9xptq} “

:x2ptq } 9xptq} ´ 9x2ptq :x1ptq`:x2ptq
} 9xptq}

} 9xptq}2

“ :x2ptq } 9xptq}2 ´ 9x2ptq ¨ p:x1ptq ` :x2ptqq
} 9xptq}3

B
BtN

2pxptqq “´:x1ptq } 9xptq}2 ` 9x1ptq ¨ p:x1ptq ` :x2ptqq
} 9xptq}3

Note that DNppq is not necessarily in TpM . Thus, we have to project it onto
TpM . To this end, let us choose t 9xptqu as the base of TpM .

Curvature
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Overall, we have Dnppqr 9xptqs “ κptq ¨ 9xptq.
Therefore, we have

κptq “
A

9Nptq, 9xptq
E

} 9xptq}2 “ 9x1ptq:x2ptq } 9xptq}2 ´ 9x2ptq:x1ptq } 9xptq}2
} 9xptq}5

“det p 9xptq, :xptqq
} 9xptq}3

By construction, we know that curvature is invariant with respect to

■ Translation. Why?
■ Rotation. Why?
■ Reparametrization. Why?

Curvature of Implicit Submanifolds
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If F : R2 Ñ R has the regular value c P R, how can we use F in order to compute
the curvature of M at p P M?

The normal field n can be defined as nppq “ ∇F ppq
}∇F ppq} .

Since n is also defined in a neighborhood of M , we can compute its derivative
Dn : M Ñ R2ˆ2. If we write the linear mapping Dnppq with respect to the basis
Bp “ t∇F ppq,∇F ppqKu, we obtain

MBp

Bp
pDnppqq “

ˆ
0 ˚
˚ κppq

˙
.

Therefore, we have

κppq “ trDnppq “ div

ˆ ∇F ppq
}∇F ppq}

˙
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