Analysis of 3D Shapes (IN2238)

Frank R. Schmidt
Matthias Vestner

Summer Semester 2016

3. Differential and Curvature

While the concept of the derivative or differential is nowadays one of the basic concepts in modern mathematics, it took a while to find a clean mathematical definition.

The notation $\frac{\mathrm{dy}}{\mathrm{dx}}$ is due to Leibniz who called dx and dy an "infinitely small change of" x resp. y.

In 1924, Courant mentioned that the idea of the differential as infinite small expression "lacks any meaning" and is therefore "useless".

The modern notion of derivatives and differential is due to Cauchy and
Weierstraß, which we want to revise in order to extend it later to smooth mappings between manifolds.

IN2238 - Analysis of Three-Dimensional Shapes
3. Differential and Curvature - 4 / 24

Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a postion $x_{0} \in \mathbb{R}$, its differential $\operatorname{Df}\left(x_{0}\right)$ is the unique linear mapping $L: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
f\left(x_{0}+h\right) & =f\left(x_{0}\right)+L[h]+r(h) \\
\lim _{h \rightarrow 0} \frac{r(h)}{|h|} & =0
\end{aligned}
$$

IN2238 - Analysis of Three-Dimensional Shapes
3. Differential and Curvature - 6 / 24

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ be differentiable functions. Then we have

$$
\begin{aligned}
(f \circ g)\left(x_{0}+h\right)= & f\left(g\left(x_{0}\right)+D g\left(x_{0}\right)[h]+r_{g}(h)\right) \\
= & (f \circ g)\left(x_{0}\right)+D f\left(g\left(x_{0}\right)\right)\left[D g\left(x_{0}\right)[h]+r_{g}(h)\right]+ \\
& r_{f}\left(D g\left(x_{0}\right)[h]+r_{g}(h)\right) \\
= & (f \circ g)\left(x_{0}\right)+D f\left(g\left(x_{0}\right)\right)\left[D g\left(x_{0}\right)[h]\right]+r(h)
\end{aligned}
$$

Thus we have

$$
D(\mathbf{f} \circ \mathbf{g})\left(x_{0}\right)=\operatorname{Df}\left(g\left(x_{0}\right)\right) \circ \operatorname{Dg}\left(x_{0}\right)
$$

with

$$
J_{i, j}=\left\langle e_{i}, J \cdot e_{j}\right\rangle=\left\langle e_{i}, D f\left(x_{0}\right)\left[e_{j}\right]\right\rangle=\lim _{h \rightarrow 0} \frac{f^{i}\left(x_{0}+h \cdot e_{j}\right)-f^{i}\left(x_{0}\right)}{h}=\partial_{j} f^{i}\left(x_{0}\right)
$$

Let $g_{1}, g_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $f(x, y):=x+y$, we have

$$
\begin{aligned}
D\left(g_{1}+g_{2}\right)\left(x_{0}\right) & =D(f \circ g)\left(x_{0}\right)=D f\left(g\left(x_{0}\right)\right) \cdot D g\left(x_{0}\right) \\
& =\left(\begin{array}{ll}
\text { id } & \text { id }
\end{array}\right) \cdot\binom{D g_{1}\left(x_{0}\right)}{D g_{2}\left(x_{0}\right)}=D g_{1}\left(x_{0}\right)+D g_{2}\left(x_{0}\right)
\end{aligned}
$$

Let $g_{1}, g_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ and $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ with $f(x, y):=x \cdot y$, we have

$$
\begin{aligned}
D\left(g_{1} \cdot g_{2}\right)\left(x_{0}\right) & =D(f \circ g)\left(x_{0}\right)=D f\left(g\left(x_{0}\right)\right) \cdot D g\left(x_{0}\right) \\
& =\left(\begin{array}{ll}
g_{2}\left(x_{0}\right) & \left.g_{1}\left(x_{0}\right)\right) \cdot\binom{D g_{1}\left(x_{0}\right)}{D g_{2}\left(x_{0}\right)} \\
& =D g_{1}\left(x_{0}\right) \cdot g_{2}\left(x_{0}\right)+D g_{2}\left(x_{0}\right) \cdot g_{1}\left(x_{0}\right)
\end{array} . . \begin{array}{l}
\end{array}\right)
\end{aligned}
$$

Given a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and a position $p \in \mathbb{R}^{m}$, the equation

$$
f(p+v)=f(p)+D f(p)[v]+r(v)
$$

can be interpreted as following:
p describes a point in the space on which f is defined,
v describes the direction in which we change the point p
$D f(p)[v]$ describes the direction in which f changes if we change the point p in the direction v.

For vector spaces, there is no distinction between points and directions. For manifolds M, points p will be on the manifold and directions on the tangent space $T_{p} M$.

IN2238 - Analysis of Three-Dimensional Shapes
Curve Representation of Tangent Vectors
Differential Push-Forward Curvature of 2D Objects

Given a point $p \in M$ of a d-dimensional submanifold $M \subset \mathbb{R}^{n}$, we can represent a tangent vector $v \in T_{p} M$ as a curve $c:(-\varepsilon, \varepsilon) \rightarrow M$ with $c(0)=p$.

To see this, let us look at the manifold from the point of view of a coordinate mapping $x: U \rightarrow M$ with $0 \in U \subset \mathbb{R}^{d}$ and $x(0)=p$.

Since $v \in T_{p} M=\operatorname{Im}(D x(0))$, we know that there is an $h \in \mathbb{R}^{d}$ such that $D x(0)[h]=v$.

Using

$$
c:(-\varepsilon, \varepsilon) \rightarrow M
$$

$$
c(t)=x(t \cdot h)
$$

we have

$$
D c(0)=D x(0 \cdot h) \cdot h=v
$$

IN2238 - Analysis of Three-Dimensional Shapes

Alternative Definition of Tangent Vectors
Differential Push-Forward Curvature of 2D Objects
Given a point $p \in M$ of a d-dimensional submanifold $M \subset \mathbb{R}^{n}$, we define

$$
\mathcal{C}_{p} M:=\{c:(-\varepsilon, \varepsilon) \rightarrow M \mid \exists \varepsilon>0: c \text { is smooth and } c(0)=p\} .
$$

The goal is to define $T_{p} M$ by defining an equivalence relation on $\mathcal{C}_{p} M$:

$$
c_{1} \sim c_{2} \quad: \Leftrightarrow \quad D c_{1}(0)=D c_{2}(0)
$$

It is easy to check that \sim satisfies reflexivity, symmetry and transitivity.
It turns out $T_{p} M=\mathcal{C}_{p} M / \sim$, which provides us with an alternative definition for the tangent space $T_{p} M$.

The advantage of this rather theoretical definition is that for any $v \in T_{p} M$ we can choose a curve $c \in v$ that passes through p and vice versa, i.e., any curve c that passes through a point p defines a tangent vector $v:=[c]$.

IN2238 - Analysis of Three-Dimensional Shapes
Coordinate Interpretation
Differential Push-Forward Curvature of 2D Objects

Given coordinate mappings $x_{p}: U_{p} \rightarrow M$ and $x_{q}: U_{q} \rightarrow N$ with $p=x_{p}(0)$ and $q=f(p)=x_{q}(0)$, the differential becomes

$$
D f(p)[v]=\left.\frac{\partial}{\partial t}\left(x_{q} \circ x_{q}^{-1} \circ f \circ x_{p}\right)(t \cdot h)\right|_{t=0}
$$

If we were to apply the chain rule, we would obtain

$$
D f(p)[v]=\mathbf{D}\left(\mathbf{x}_{\mathbf{q}}\right)\left(x^{-1}(q)\right) \cdot \mathbf{D}\left(\mathbf{x}_{\mathbf{q}}^{-1}\right)(q) \cdot \mathbf{D}(p) \cdot \mathbf{D} \mathbf{x}_{\mathbf{p}}(0) \cdot \mathbf{h}
$$

■ $D x_{p}(0) \cdot h$ defines the tangent vector $v \in T_{p} M$.
■ $D f(p)$ is the differential of f ignoring the submanifolds M and N.

- $D\left(x_{q}^{-1}\right)(q)$ is the pseudo-inverse of $D\left(x_{q}\right)\left(x_{q}^{-1}(q)\right)$.

■ $D\left(x_{q}\right)\left(x^{-1}(q)\right) \cdot D\left(x_{q}^{-1}\right)(q)$ projects a vector onto $T_{q} M$.

Differential as Push-Forward
Differential Push-Forward Curvature of 2D Objects
Given two submanifolds M and N as well as a function $f: M \rightarrow N$. For $p \in M$ and $q=f(p) \in N$, the differential $D f(p)$ is the push-forward

$$
\begin{aligned}
D f(p): T_{p} M & \rightarrow T_{q} N \\
{[c] } & \mapsto[f \circ c]
\end{aligned}
$$

Assuming that $x_{p}: U_{p} \rightarrow M$ is a coordinate mapping for $p=x_{p}(0)$ and $x_{q}: U_{q} \rightarrow N$ is a coordinate mapping for $q=x_{q}(0)$, the push-forward definition becomes

$$
D f(p)[v]=\left.\frac{\partial}{\partial t}\left(x_{q} \circ x_{q}^{-1} \circ f \circ x_{p}\right)(t \cdot h)\right|_{t=0}
$$

where $v=D x_{p}(0)[h]$.
It is easy to show that the push-forward is a linear mapping. Excercise.

IN2238 - Analysis of Three-Dimensional Shapes
Utit
What is a Matrix?
Differential Push-Forward Curvature of 2D Objects

Linear mappings are commonly represented by matrices. We want to emphasize the difference between a matrix and a linear mapping.

Given an m-dimensional \mathbb{R}-vector space X, an n-dimensional \mathbb{R}-vector space Y and a linear mapping $L: X \rightarrow Y$, we can represent L by finite many scalars.

To this end, let $\mathcal{B}_{X}=\left\{x_{1}, \ldots, x_{m}\right\}$ and $\mathcal{B}_{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$ bases of X and Y respectively. Then we know that for each $x_{j} \in \mathcal{B}_{X}$ we have

$$
L\left(x_{j}\right)=\sum_{i=1}^{n} a_{i j} y_{i}
$$

for some $a_{i j} \in \mathbb{R}$.
We write this $a_{i j}$ in a matrix A and call $A=\mathcal{M}_{\mathcal{B}_{Y}}^{\mathcal{B}_{X}}(L) \in \mathbb{R}^{n \times m}$ the representing matrix of L with respect to the basis \mathcal{B}_{X} and \mathcal{B}_{Y}.

Given two submanifolds M and N as well as a function $f: M \rightarrow N$. For $p \in M$ and $q=f(p) \in N$, the differential $D f(p): T_{p} M \rightarrow T_{q} N$ is a linear mapping, but in general we do not have a canonical matrix representation.

This means that any basis \mathcal{B}_{p} of $T_{p} M$ and \mathcal{B}_{q} of $T_{q} N$ would define a different matrix $\mathcal{M}_{\mathcal{B}_{q}}^{\mathcal{B}_{p}}(D f(p)) \in \mathbb{R}^{n \times m}$ with $n=\operatorname{dim}(N)$ and $m=\operatorname{dim}(M)$.

Since $T_{p} M=\operatorname{Im}(D x(0)), \mathcal{B}_{p}=\left\{D x(0)\left[e_{1}\right], \ldots, D x(0)\left[e_{m}\right]\right\}$ would be a natural way of defining a basis of $T_{p} M$. Nonetheless, the resulting matrix would then depend on the coordinate mappings x_{p} and x_{q} that we choose for $p \in M$ and $q \in N$ respectively.

While there is no unique matrix that describes the differential, it is important to note that rank $D f(p)$ is independent of the choosen coordinate mappings.

IN2238-Analysis of Three-Dimensional Shapes

3. Differential and Curvature - 17 / 24

Given a 2D object O and its boundary, the 1D submanifold $M:=\partial O$, we like to define the normal vector $n(p)$ for each point $p \in M$.

Given a coordinate mapping $x: U \rightarrow M$ with $x(0)=p$, we have
$T_{p} M=\operatorname{Im}(D x(0))$ and a normal vector might be defined via

$$
n(p)=\frac{1}{\|D x(0)\|}\binom{+D x^{2}(0)}{-D x^{1}(0)} \in \mathbb{S}^{1}
$$

Since M is of codimension $1, n(p)$ is up to the sign uniquely defined.
Thus, we have a smooth mapping

$$
n: M \rightarrow \mathbb{S}^{1}
$$

that defines a unique normal vector field of M. Why?

IN2238-Analysis of Three Dimensional Shapes

3. Difierential and Cuvature - 19 / 24

If we take the derivative of $N=\left(N^{1}, N^{2}\right): U \rightarrow \mathbb{R}^{2}, t \mapsto n \circ x(t)$, we obtain

$$
\begin{aligned}
\frac{\partial}{\partial t} N^{1}(x(t)) & =\frac{\partial}{\partial t} \frac{\dot{x}^{2}(t)}{\|\dot{x}(t)\|}=\frac{\ddot{x}^{2}(t)\|\dot{x}(t)\|-\dot{x}^{2}(t) \frac{\ddot{x}^{1}(t)+\dot{x}^{2}(t)}{\|\dot{x}(t)\|}}{\|\dot{x}(t)\|^{2}} \\
& =\frac{\ddot{x}^{2}(t)\|\dot{x}(t)\|^{2}-\dot{x}^{2}(t) \cdot\left(\ddot{x}^{1}(t)+\ddot{x}^{2}(t)\right)}{\|\dot{x}(t)\|^{3}} \\
\frac{\partial}{\partial t} N^{2}(x(t)) & =\frac{-\ddot{x}^{1}(t)\|\dot{x}(t)\|^{2}+\dot{x}^{1}(t) \cdot\left(\ddot{x}^{1}(t)+\ddot{x}^{2}(t)\right)}{\|\dot{x}(t)\|^{3}}
\end{aligned}
$$

Note that $D N(p)$ is not necessarily in $T_{p} M$. Thus, we have to project it onto $T_{p} M$. To this end, let us choose $\{\dot{x}(t)\}$ as the base of $T_{p} M$.

Curvature of Implicit Submanifolds Differential Push-Forward Curvature of 2D Objects

If $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has the regular value $c \in \mathbb{R}$, how can we use F in order to compute the curvature of M at $p \in M$?
The normal field n can be defined as $n(p)=\frac{\nabla F(p)}{\|\nabla F(p)\|}$.
Since n is also defined in a neighborhood of M, we can compute its derivative $D n: M \rightarrow \mathbb{R}^{2 \times 2}$. If we write the linear mapping $D n(p)$ with respect to the basis $\mathcal{B}_{p}=\left\{\nabla F(p), \nabla F(p)^{\perp}\right\}$, we obtain

$$
\mathcal{M}_{\mathcal{B}_{p}}^{\mathcal{B}_{p}}(D n(p))=\left(\begin{array}{cc}
0 & * \\
* & \kappa(p)
\end{array}\right) .
$$

Therefore, we have

$$
\kappa(p)=\operatorname{tr} D n(p)=\operatorname{div}\left(\frac{\nabla F(p)}{\|\nabla F(p)\|}\right)
$$

Curvature of 2D Objects

Differential of the Normal Mapping
Differential Push-Forward Curvature of 2D Objects

Given a point $p \in M$ of $M \subset \mathbb{R}^{2}$, we have

$$
D n(p): T_{p} M \rightarrow T_{n(p)} \mathbb{S}^{1}
$$

Since we have

$$
T_{n(p)} \mathbb{S}^{1}=n(p)^{\perp}=T_{p} M
$$

we know that $D n(p)$ is an endomorphism, i.e., a linear mapping that maps the vector space $T_{p} M$ onto itself.

Because $\operatorname{dim} T_{p} M=1, D n(p)$ maps a vector $v \in T_{p} M$ to $\kappa(p) \cdot v$.
This scalar value $\kappa(p) \in \mathbb{R}$ is called the curvature of M at the position p.

IN2238 - Analysis of Three-Dimensional Shapes
3. Differential and Curvature - 20 / 24

Overall, we have $D n(p)[\dot{x}(t)]=\kappa(t) \cdot \dot{x}(t)$.
Therefore, we have

$$
\begin{aligned}
\kappa(t) & =\frac{\langle\dot{N}(t), \dot{x}(t)\rangle}{\|\dot{x}(t)\|^{2}}=\frac{\dot{x}^{1}(t) \ddot{x}^{2}(t)\|\dot{x}(t)\|^{2}-\dot{x}^{2}(t) \ddot{x}^{1}(t)\|\dot{x}(t)\|^{2}}{\|\dot{x}(t)\|^{5}} \\
& =\frac{\operatorname{det}(\dot{x}(t), \ddot{x}(t))}{\|\dot{x}(t)\|^{3}}
\end{aligned}
$$

By construction, we know that curvature is invariant with respect to
■ Translation. Why?

- Rotation. Why?
- Reparametrization. Why?

IN2238 - Analysis of Three-Dimensional Shapes

Differential

- Cauchy, Cours d'Analyse de l'École Royale Polytechnique; I.re Partie. Analyse algébrique, 1821.

