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3. Differential and Curvature 2 / 24

Differential 3 / 24

History of Differential

While the concept of the derivative or differential is nowadays one of the basic concepts in modern mathematics, it took a while to find a clean
mathematical definition.

The notation dy
dx

is due to Leibniz who called dx and dy an “infinitely small change of” x resp. y.

In 1924, Courant mentioned that the idea of the differential as infinite small expression “lacks any meaning” and is therefore “useless”.

The modern notion of derivatives and differential is due to Cauchy and Weierstraß, which we want to revise in order to extend it later to smooth mappings
between manifolds.

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 4 / 24
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Derivative according to Cauchy

f

x0 x0 ` h

The derivative f 1px0q of a function f : R Ñ R at the position x0 P R is

f 1px0q :“ lim
hÑ0

fpx0 ` hq ´ fpx0q

h

While this is a working mathematical definition, it is a bit difficult to extend it to arbitrary functions f : Rn Ñ R
m, since we cannot “divide by vectors”.

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 5 / 24
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Differential according to Weierstraß

fpx0 ` hq

fpx0q ` Lrhs
r

x0x0 ` h
h

rphq

rphq
|h|

Given a function f : R Ñ R and a postion x0 P R, its differential Dfpx0q is the unique linear mapping L : R Ñ R such that

fpx0 ` hq “fpx0q ` Lrhs ` rphq

lim
hÑ0

rphq

|h|
“0

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 6 / 24
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Jacobi Matrix

Let f : Rm Ñ R
n be a differentiable function and x0 P R

m. The differential

Dfpx0q : Rm Ñ R
n

is a linear mapping.

Using the canonical bases te1, . . . , emu for Rm and te1, . . . , enu for Rn, Dfpx0q can be written in matrix form, the Jacobi matrix

Dfpx0qrhs “ J ¨ h J “

¨

˚

˝

J1,1 ¨ ¨ ¨ J1,m
...

...
Jn,1 ¨ ¨ ¨ Jn,m

˛

‹

‚

with

Ji,j “ xei, J ¨ ejy “ xei,Dfpx0qrej sy “ lim
hÑ0

f ipx0 ` h ¨ ejq ´ f ipx0q

h
“ Bjf

ipx0q

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 7 / 24
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Chain Rule

Let f : Rm Ñ R
n and g : Rk Ñ R

m be differentiable functions. Then we have

pf ˝ gqpx0 ` hq “f pgpx0q ` Dgpx0qrhs ` rgphqq

“pf ˝ gqpx0q ` Dfpgpx0qq rDgpx0qrhs ` rgphqs `

rf pDgpx0qrhs ` rgphqq

“pf ˝ gqpx0q ` Dfpgpx0qq rDgpx0qrhss ` rphq

Thus we have

Dpf ˝ gqpx0q “ Dfpgpx0qq˝Dgpx0q

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 8 / 24

Chain Rule (Example)

Let g1, g2 : R
m Ñ R

n and f : Rn ˆ R
n Ñ R

n with fpx, yq :“ x ` y, we have

Dpg1 ` g2qpx0q “Dpf ˝ gqpx0q “ Dfpgpx0qq ¨ Dgpx0q

“
`

id id
˘

¨

ˆ

Dg1px0q
Dg2px0q

˙

“ Dg1px0q ` Dg2px0q

Let g1, g2 : R
m Ñ R and f : R ˆ R Ñ R with fpx, yq :“ x ¨ y, we have

Dpg1 ¨ g2qpx0q “Dpf ˝ gqpx0q “ Dfpgpx0qq ¨ Dgpx0q

“
`

g2px0q g1px0q
˘

¨

ˆ

Dg1px0q
Dg2px0q

˙

“Dg1px0q ¨ g2px0q ` Dg2px0q ¨ g1px0q
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Interpretation of the Differential

Given a function f : Rm Ñ R
n and a position p P R

m, the equation

fpp ` vq “fppq ` Dfppqrvs ` rpvq

can be interpreted as following:

■ p describes a point in the space on which f is defined,
■ v describes the direction in which we change the point p
■ Dfppqrvs describes the direction in which f changes if we change the point p in the direction v.

For vector spaces, there is no distinction between points and directions. For manifolds M , points p will be on the manifold and directions on the tangent
space TpM .

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 10 / 24
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Push-Forward 11 / 24

Curve Representation of Tangent Vectors

Given a point p P M of a d-dimensional submanifold M Ă R
n, we can represent a tangent vector v P TpM as a curve c : p´ε, εq Ñ M with cp0q “ p.

To see this, let us look at the manifold from the point of view of a coordinate mapping x : U Ñ M with 0 P U Ă R
d and xp0q “ p.

Since v P TpM “ ImpDxp0qq, we know that there is an h P R
d such that Dxp0qrhs “ v.

Using

c : p´ε, εq Ñ M cptq “ x pt ¨ hq ,

we have

Dcp0q “ Dxp0 ¨ hq ¨ h “ v.

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 12 / 24
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Alternative Definition of Tangent Vectors

Given a point p P M of a d-dimensional submanifold M Ă R
n, we define

CpM :“ tc : p´ε, εq Ñ M |Dε ą 0 : c is smooth and cp0q “ pu.

The goal is to define TpM by defining an equivalence relation on CpM :

c1 „ c2 :ô Dc1p0q “ Dc2p0q,

It is easy to check that „ satisfies reflexivity, symmetry and transitivity.

It turns out TpM “ CpM{ „, which provides us with an alternative definition for the tangent space TpM .

The advantage of this rather theoretical definition is that for any v P TpM we can choose a curve c P v that passes through p and vice versa, i.e., any curve
c that passes through a point p defines a tangent vector v :“ rcs.

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 13 / 24
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Differential as Push-Forward

Given two submanifolds M and N as well as a function f : M Ñ N . For p P M and q “ fppq P N , the differential Dfppq is the push-forward

Dfppq : TpM ÑTqN

rcs ÞÑrf ˝ cs

Assuming that xp : Up Ñ M is a coordinate mapping for p “ xpp0q and xq : Uq Ñ N is a coordinate mapping for q “ xqp0q, the push-forward definition
becomes

Dfppqrvs “
B

Bt
pxq ˝ x´1

q ˝ f ˝ xpqpt ¨ hq

ˇ

ˇ

ˇ

ˇ

t“0

,

where v “ Dxpp0qrhs.

It is easy to show that the push-forward is a linear mapping. Excercise.

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 14 / 24
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Coordinate Interpretation

Given coordinate mappings xp : Up Ñ M and xq : Uq Ñ N with p “ xpp0q and q “ fppq “ xqp0q, the differential becomes

Dfppqrvs “
B

Bt
pxq ˝ x´1

q ˝ f ˝ xpqpt ¨ hq

ˇ

ˇ

ˇ

ˇ

t“0

.

If we were to apply the chain rule, we would obtain

Dfppqrvs “ Dpxqqpx´1pqqq ¨ Dpx´1
q qpqq ¨ Dfppq ¨ Dxpp0q ¨ h

■ Dxpp0q ¨ h defines the tangent vector v P TpM .
■ Dfppq is the differential of f ignoring the submanifolds M and N .
■ Dpx´1

q qpqq is the pseudo-inverse of Dpxqqpx´1
q pqqq.

■ Dpxqqpx´1pqqq ¨ Dpx´1
q qpqq projects a vector onto TqN .

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 15 / 24

What is a Matrix?

Linear mappings are commonly represented by matrices. We want to emphasize the difference between a matrix and a linear mapping.

Given an m-dimensional R-vector space X, an n-dimensional R-vector space Y and a linear mapping L : X Ñ Y , we can represent L by finite many scalars.

To this end, let BX “ tx1, . . . , xmu and BY “ ty1, . . . , ynu bases of X and Y respectively. Then we know that for each xj P BX we have

Lpxjq “
n

ÿ

i“1

aijyi.

for some aij P R.

We write this aij in a matrix A and call A “ M
BX

BY
pLq P R

nˆm the representing matrix of L with respect to the basis BX and BY .

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 16 / 24
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Matrix of the Differential

Given two submanifolds M and N as well as a function f : M Ñ N . For p P M and q “ fppq P N , the differential Dfppq : TpM Ñ TqN is a linear
mapping, but in general we do not have a canonical matrix representation.

This means that any basis Bp of TpM and Bq of TqN would define a different matrix M
Bp

Bq
pDfppqq P R

nˆm with n “ dimpNq and m “ dimpMq.

Since TpM “ ImpDxp0qq, Bp “ tDxp0qre1s, . . . ,Dxp0qremsu would be a natural way of defining a basis of TpM . Nonetheless, the resulting matrix would
then depend on the coordinate mappings xp and xq that we choose for p P M and q P N respectively.

While there is no unique matrix that describes the differential, it is important to note that rankDfppq is independent of the choosen coordinate mappings.

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 17 / 24
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Curvature of 2D Objects 18 / 24

Planar Curves and Normals

Given a 2D object O and its boundary, the 1D submanifold M :“ BO, we like to define the normal vector nppq for each point p P M .

Given a coordinate mapping x : U Ñ M with xp0q “ p, we have TpM “ ImpDxp0qq and a normal vector might be defined via

nppq “
1

}Dxp0q}

ˆ

`Dx2p0q
´Dx1p0q

˙

P S
1

Since M is of codimension 1, nppq is up to the sign uniquely defined.

Thus, we have a smooth mapping

n : M Ñ S
1

that defines a unique normal vector field of M . Why?

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 19 / 24
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Differential of the Normal Mapping

Given a point p P M of M Ă R
2, we have

Dnppq : TpM Ñ TnppqS
1.

Since we have

TnppqS
1 “ nppqK “ TpM,

we know that Dnppq is an endomorphism, i.e., a linear mapping that maps the vector space TpM onto itself.

Because dimTpM “ 1, Dnppq maps a vector v P TpM to κppq ¨ v.

This scalar value κppq P R is called the curvature of M at the position p.

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 20 / 24

Derivative of the Normal Field

If we take the derivative of N “ pN1, N2q : U Ñ R
2, t ÞÑ n ˝ xptq, we obtain

B

Bt
N1pxptqq “

B

Bt

9x2ptq

} 9xptq}
“

:x2ptq } 9xptq} ´ 9x2ptq :x1ptq`:x2ptq
} 9xptq}

} 9xptq}2

“
:x2ptq } 9xptq}2 ´ 9x2ptq ¨ p:x1ptq ` :x2ptqq

} 9xptq}3

B

Bt
N2pxptqq “

´:x1ptq } 9xptq}2 ` 9x1ptq ¨ p:x1ptq ` :x2ptqq

} 9xptq}3

Note that DNppq is not necessarily in TpM . Thus, we have to project it onto TpM . To this end, let us choose t 9xptqu as the base of TpM .

16
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Curvature

Overall, we have Dnppqr 9xptqs “ κptq ¨ 9xptq.

Therefore, we have

κptq “

A

9Nptq, 9xptq
E

} 9xptq}2
“

9x1ptq:x2ptq } 9xptq}2 ´ 9x2ptq:x1ptq } 9xptq}2

} 9xptq}5

“
det p 9xptq, :xptqq

} 9xptq}3

By construction, we know that curvature is invariant with respect to

■ Translation. Why?
■ Rotation. Why?
■ Reparametrization. Why?

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 22 / 24
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Curvature of Implicit Submanifolds

If F : R
2 Ñ R has the regular value c P R, how can we use F in order to compute the curvature of M at p P M?

The normal field n can be defined as nppq “ ∇F ppq
}∇F ppq} .

Since n is also defined in a neighborhood of M , we can compute its derivative Dn : M Ñ R
2ˆ2. If we write the linear mapping Dnppq with respect to the

basis Bp “ t∇F ppq,∇F ppqKu, we obtain

M
Bp

Bp
pDnppqq “

ˆ

0 ˚
˚ κppq

˙

.

Therefore, we have

κppq “ trDnppq “ div

ˆ

∇F ppq

}∇F ppq}

˙

IN2238 - Analysis of Three-Dimensional Shapes 3. Differential and Curvature – 23 / 24
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