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Differential 3/24

History of Differential

While the concept of the derivative or differential is nowadays one of the basic concepts in modern mathematics, it took a while to find a clean
mathematical definition.

The notation g—i is due to Leibniz who called dx and dy an “infinitely small change of” z resp. y.
In 1924, Courant mentioned that the idea of the differential as infinite small expression “lacks any meaning” and is therefore “useless”.

The modern notion of derivatives and differential is due to Cauchy and Weierstral3, which we want to revise in order to extend it later to smooth mappings
between manifolds.
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Derivative according to Cauchy

0 xg+h

The derivative f'(x() of a function f: R — R at the position g € R is

) i L2010 = S120)

While this is a working mathematical definition, it is a bit difficult to extend it to arbitrary functions f: R™ — R™, since we cannot “divide by vectors”.
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Differential according to Weierstral3

f(xo) + L[h]

Given a function f: R — R and a postion x( € R, its differential D f(z() is the unique linear mapping L: R — R such that

f(xo + h) =f(xo) + L[] +r(h)

. r(h)
lim —MY
TN
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Jacobi Matrix

Let f: R™ — R" be a differentiable function and xy € R". The differential
Df(xo): R™ - R"
is a linear mapping.

Using the canonical bases {e1, ..., ep} for R™ and {ey,.

Df(ao)[k] = - h

with

.. en} for R”, Df(zg) can be written in matrix form, the Jacobi matrix

f'(@o + h-ej) = f'(x0)

Jij = ei, J - ¢j) = {ei, Df (o) |e;]) = lim

- = 0; f'(z0)
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Chain Rule

Let f: R™ — R™ and g: R¥ — R™ be differentiable functions. Then we have

(f og)(wo +h) =f (9(x0) + Dg(xo)[h] + ry(h))
=(fog)(z0) + Df(g(z0)) [Dg(wo)[h] + re(h)] +
rf (Dg(zo)[h] + r4(h))
=(fog)(z0) + Df(g(x0)) [Dg(xo)[h]] + r(h)

Thus we have

D(f o g)(xo) = Df(g(x0))oDg(z0)
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Chain Rule (Example)

Let g1,92: R™ — R™ and f: R" x R" — R" with f(z,y) := x + y, we have

D(g1 + g2)(z0) =D(f o g)(wo) = Df(g(w0)) - Dg(z0)
(id id) <g§; ig) Dy (xo) + Dga(xo)

Let g1,92: R™ > R and f: R x R — R with f(z,y) := x -y, we have
D(g1 - g2)(z0) =D(f o g)(z0) = D f(g(x0)) - Dg(wo)

= (92(z0)  91(0)) - (552823)

=Dg (o) - g2(x0) + Dga(w0) - g1(w0)
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Interpretation of the Differential

Given a function f: R™ — R" and a position p € R™, the equation
fp+v)=f(p) + Df(p)lv] +r(v)

can be interpreted as following:

B p describes a point in the space on which f is defined,
B v describes the direction in which we change the point p
B D f(p)[v] describes the direction in which f changes if we change the point p in the direction v.

For vector spaces, there is no distinction between points and directions. For manifolds M, points p will be on the manifold and directions on the tangent
space 1), M.
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Push-Forward

11 / 24

Curve Representation of Tangent Vectors

Using
c: (—e,e) > M

we have

Given a point p € M of a d-dimensional submanifold M < R"™, we can represent a tangent vector v € T,M as a curve ¢ : (—e,&) — M with ¢(0) = p.
To see this, let us look at the manifold from the point of view of a coordinate mapping z: U — M with 0 € U = R¢ and z(0) = p.

Since v € T,M = Im(Dx(0)), we know that there is an h € R? such that Dz(0)[h] = v.

c(t)

x(t-h),

Dc(0) = Dz(0-h)-h =w.
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Alternative Definition of Tangent Vectors

Given a point p € M of a d-dimensional submanifold M < R"™, we define

CpM := {c: (—e,e) = M|3e > 0: ¢ is smooth and ¢(0) = p}.

The goal is to define T),M by defining an equivalence relation on C,M:

€1~ Cy = Decq(0) = Des(0),
It is easy to check that ~ satisfies reflexivity, symmetry and transitivity.
It turns out T, M = C,M/ ~, which provides us with an alternative definition for the tangent space T, .

The advantage of this rather theoretical definition is that for any v € T),M we can choose a curve ¢ € v that passes through p and vice versa, i.e., any curve
c that passes through a point p defines a tangent vector v := [c].
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Differential as Push-Forward

Given two submanifolds M and N as well as a function f: M — N. For pe M and q = f(p) € N, the differential D f(p) is the push-forward

Df(p): T,M -T,N
[e] =[fod

Assuming that x,,: U, — M is a coordinate mapping for p = z,,(0) and z,: U; — N is a coordinate mapping for ¢ = 2,(0), the push-forward definition
becomes

Df(p)[v] = %(:rq o:):;1 o foxp)(t-h) .

where v = Dz, (0)[h].

It is easy to show that the push-forward is a linear mapping. Excercise.
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Coordinate Interpretation

Given coordinate mappings z,: U, — M and z4: U; — N with p = 2,(0) and ¢ = f(p) = x4(0), the differential becomes

Df(p)[v] a(a:qoajglofo:zp)(t.h)

o =0

If we were to apply the chain rule, we would obtain

Df(p)[v] = D(xq)(z~"(g)) - D(x4")(q) - Df(p) - Dx;(0) - b

Dx,(0) - h defines the tangent vector v € T, M.

D f(p) is the differential of f ignoring the submanifolds M and N.
D(:zq_l)(q) is the pseudo-inverse of D(:zq)(:zq_l(q)).
D(zq)(z(q)) - D(x;')(q) projects a vector onto T, M.
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What is a Matrix?

Linear mappings are commonly represented by matrices. We want to emphasize the difference between a matrix and a linear mapping.
Given an m-dimensional R-vector space X, an n-dimensional R-vector space Y and a linear mapping L: X — Y, we can represent L by finite many scalars.

To this end, let Bx = {z1,...,Zm} and By = {y1,...,yn} bases of X and Y respectively. Then we know that for each z; € Bx we have
n
L(:L‘J) = Z AijY;-
i=1

for some a;; € R.

We write this a;; in a matrix A and call A = Mgi (L) € R™ ™ the representing matrix of L with respect to the basis Bx and By.
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Matrix of the Differential

Given two submanifolds M and N as well as a function f: M — N. For pe M and ¢ = f(p) € N, the differential Df(p): T,M — TN is a linear
mapping, but in general we do not have a canonical matrix representation.

This means that any basis B, of T, M and B, of T; N would define a different matrix Mg: (Df(p)) € R™™ with n = dim(N) and m = dim(M).

Since T, M = Im(Dz(0)), B, = {Dz(0)[e1],...,Dx(0)[en]} would be a natural way of defining a basis of 7T, A/. Nonetheless, the resulting matrix would
then depend on the coordinate mappings z,, and z, that we choose for p € M and g € N respectively.

While there is no unique matrix that describes the differential, it is important to note that rank D f(p) is independent of the choosen coordinate mappings.
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Curvature of 2D Objects 18 / 24

Planar Curves and Normals

Given a 2D object O and its boundary, the 1D submanifold M := 0O, we like to define the normal vector n(p) for each point p € M.

Given a coordinate mapping x: U — M with x(0) = p, we have T, M = Im(Dz(0)) and a normal vector might be defined via

1 2
"0 = g (o)
Since M is of codimension 1, n(p) is up to the sign uniquely defined.
Thus, we have a smooth mapping
n: M — St

that defines a unique normal vector field of M. Why?
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Differential of the Normal Mapping

Given a point p e M of M < R?, we have

Dn(p): T,M — T,,)S".

Since we have

TopS' = n(p)* = T,M,

we know that Dn(p) is an endomorphism, i.e., a linear mapping that maps the vector space T, M onto itself.

Because dim 7T, M = 1, Dn(p) maps a vector v € T, M to k(p) - v.

This scalar value k(p) € R is called the curvature of M at the position p.
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Derivative of the Normal Field

If we take the derivative of N = (N', N?): U — R?, ¢t — n o z(t), we obtain

0 3(t) 22(t) | (t) —:J':Q(t)M

2 i @ _ G
O =F Eo EOIE
() a0 — (0 - (1) + #2(0)
EOlE
F =i (1) @ ()] + & (1) - (E (1) + ()
ZN2(g —
iV @®) @) P

Note that DN (p) is not necessarily in T, M. Thus, we have to project it onto 7, M. To this end, let us choose {z(t)} as the base of T},M.
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Curvature

Overall, we have Dn(p)[z(t)] = k(t) - ©(t).

Therefore, we have

o NOH0) s a0 - 20 6 150
Jé(2) P Jé(6) P
_det ((1), ii(1)
i (0)?

By construction, we know that curvature is invariant with respect to

W Translation. Why?
B Rotation. Why?
B Reparametrization. Why?
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Curvature of Implicit Submanifolds
If F: R? - R has the regular value ¢ € R, how can we use F in order to compute the curvature of M at pe M?

The normal field n can be defined as n(p) = Hg?g;”.

Since n is also defined in a neighborhood of M, we can compute its derivative Dn: M — R?*2_ If we write the linear mapping Dn(p) with respect to the
basis B, = {VF(p), VF(p)'}, we obtain

Mgﬁ(D"(p)) = <2 HFP)) '

Therefore, we have

k(p) = tr Dn(p) = div ( VF(p) )

IVE®)|
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