Analysis of 3D Shapes (IN2238)

Assuming that $B=\partial O=\bigcup_{i=1}^{k} C_{i}$ is the union of disjoint contours C_{i}, it is often enough to consider only the outer contour of B.

This is equivalent of considering a slightly different object $O^{\prime} \supset O$ that perceptially is very similar to the original object O.

In conclusion, we assume that $C=\partial O$ is a connected submanifold of dimension 1 that is diffeomorphic to \mathbb{S}^{1}. That means we have

$$
c: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2} \quad\|\dot{c}(t)\| \neq 0 \quad\left(\forall t \in \mathbb{S}^{1}\right)
$$

To every curve $c: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ of C, we can find a different curve that is parametrized uniformly.

To this end let $L:=\operatorname{length}(c)$ and

$$
\ell:[0,2 \pi] \rightarrow[0,2 \pi] \quad \quad \ell(t)=\frac{2 \pi}{L} \cdot \int_{0}^{t}\left\|\dot{c}\left(e^{\tau \cdot i}\right)\right\| \mathrm{d} \tau
$$

The curve $\hat{c}: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ with $\hat{c}\left(e^{t \cdot i}\right)=c\left(e^{\ell^{-1}(t) \cdot i}\right)$ satisfies

$$
\begin{aligned}
\left\|\frac{\mathrm{d}}{\mathrm{dt}} \hat{c}\left(e^{t \cdot i}\right)\right\| & =\left\|D c\left(e^{\ell^{-1}(t) \cdot i}\right)\left[e^{\ell^{-1(t) \cdot i}} \cdot i\right] \cdot\right\| \dot{c}\left(e^{\ell^{-1}(t) \cdot i}\right)\left\|^{-1}\right\| \frac{L}{2 \pi} \\
& =\frac{L}{2 \pi}
\end{aligned}
$$

Frank R. Schmidt
Matthias Vestner

Summer Semester 2016

4. Feature Representation and Linear Assignment Problem

2D Objects

A 2D object is an open set $O \subset \mathbb{R}^{2}$ such that $B:=\partial O$ is a submanifold of dimension 1.

A result from differential geometry is that a 1D manifold is either homeomorphic to \mathbb{S}^{1} or to \mathbb{R}. Since we want to represent an object in a compact image domain $\Omega \subset \mathbb{R}^{2}$, we can assume that B is a collection of closed contours (each homeomorphic to \mathbb{S}^{1}).

IN2238 - Analysis of Three-Dimensional Shapes
4. Feature Representation and Linear Assignment Problem - 4 / 25

Given a curve $c: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$, its length is

$$
\begin{aligned}
\operatorname{length}(c) & =\lim _{N \rightarrow \infty} \sum_{k=1}^{N}\left\|c\left(e^{\frac{2 \pi k}{N} i}\right)-c\left(e^{\frac{2 \pi(k-1)}{N} i}\right)\right\| \\
& =\lim _{N \rightarrow \infty} \sum_{k=1}^{N}\left\|\frac{c\left(e^{\frac{2 \pi k}{N} i}\right)-c\left(e^{\frac{2 \pi(k-1)}{N} i}\right)}{\frac{2 \pi}{N}}\right\| \cdot \frac{2 \pi}{N} \\
& =\int_{\mathbb{S}^{1}}\|D c(t)[t \cdot i]\| \mathrm{dt}=\int_{\mathbb{S}^{1}}\|\dot{c}(t)\| \mathrm{dt}
\end{aligned}
$$

We call c a uniform parametrization of $C=\operatorname{Im}(c)$ iff $\|\dot{c}(t)\|$ is constant. Iff this constant is 1 , we call c the arclength parametrization of C.

IN2238 - Analysis of Three-Dimensional Shapes
4. Feature Representation and Linear Assignment Problem - $6 / 25$

For every uniformly parametrized curve $c: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$, the expression to compute the curvature can be simplified.

Since we have that $\langle\dot{c}(t), \dot{c}(t)\rangle$ is constant in t, we obtain

$$
0=\frac{\mathrm{d}}{\mathrm{dt}}\langle\dot{c}(t), \dot{c}(t)\rangle=2\langle\ddot{c}(t), \dot{c}(t)\rangle
$$

Thus $\dot{c}(t)$ and $\ddot{c}(t)$ are orthogonal to one another and

$$
\operatorname{det}(\dot{c}(t), \ddot{c}(t))= \pm\|\dot{c}(t)\| \cdot\|\ddot{c}(t)\|= \pm \frac{L}{2 \pi}\|\ddot{c}(t)\|
$$

Therefore, we have for the curvature $\kappa(c(t))$

$$
|\kappa(c(t))|=\left|\frac{\operatorname{det}(\dot{c}(t), \ddot{c}(t))}{\|\dot{c}(t)\|^{3}}\right|=\|\ddot{c}(t)\| \frac{4 \pi^{2}}{L^{2}}
$$

Thit Shape Matching via Linear Assignment

 Curves Shape Matching Hungarian MethodThe goal of shape matching is to find corresponding points between two shapes. This is necessary because the feature representation uses a specific parametrization.
One way of formulating this problem is to look for a permutation $\pi:\{1, \ldots, N\} \rightarrow\{1, \ldots, N\}$ such that

$$
E(\pi)=\sum_{i=1}^{N} D_{i, \pi(i)}
$$

is minimized
In other words, we assign to each shape point of the first shape a unique point of the second shape and the cost that we assign to this assignment depends
"linearly" on this choice.
Therefore, this problem is called Linear Assignment Problem (LAP).
4. Feature Representation and Linear Assignment Problem - 17 / 25

Curves Shape Matching Hungarian Method

The LAP has to optimize a function over the space of all permutation. Since there are N ! different permuations, it is not clear whether this problem can be solved in polynomial time.
In 1955 Kuhn presented a method that has a time complexity $\mathcal{O}\left(N^{4}\right)$. 1957, Munkres improved the running time to $\mathcal{O}\left(N^{3}\right)$. Kuhn's original work was based on the work of the Hungarians Kőnig and Egerváry. For that reason, the method is sometimes referred as the Kuhn-Munkres method or the Hungarian method.

The main idea is to change the entries of the non-negative cost matrix D in order to simplify the problem. If there is a permutation π such that $D_{i, \pi(i)}=0$, we know that we found the global optimum.

An important observation is that by adding a value $a \in \mathbb{R}$ to one row or to one column, we change the value of the minimum by a, but the optimal permutation is still the same.

IN2238 - Analysis of Three-Dimensional Shapes
4. Feature Representation and Linear Assignment Problem - 19 / 25

90	75	75	80	
35	85	55	65	
125	95	90	105	
45	110	95	115	

$\Rightarrow 245+$

C	C	C		
15	$*$	0	5	
$*$	50	20	30	
35	5	$*$	15	
0	65	50	70	

- For each row r : Find the minimum a_{r}.
- Subtract from each row r its minimum a_{r}
- For each " 0 " in the matrix, replace it by a *
iff there is no * in the same column or row.
- Mark each column that contains a *.
- Iff every column is marked, the stars form an optimal permutation.
- Otherwise, find the minimal entry $a \geqslant 0$ of the non-covered entries.

Trivial Solutions
 Curves Shape Matching Hungarian Method

The following cost matrices are minimized by any permutation. Why?

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

1	1	1	1
0	0	0	0
0	0	0	0
0	0	0	0

1	1	1	1
4	4	4	4
2	2	2	2
3	3	3	3

0	0	3	0
1	1	4	1
0	0	3	0
0	0	3	0

1	1	6	1
4	4	9	4
2	2	7	2
3	3	8	3

1	2	3	4
5	6	7	8
1	2	3	4
5	6	7	8

IN2238 - Analysis of Three-Dimensional Shapes
4. Feature Representation and Linear Assignment Problem - 20 / 25

$\Rightarrow 255+$

C				
20	$*$	5	$/$	C
$*$	45	20	20	
35	$/$	$*$	5	C
0	60	50	60	

■ Subtract a from each (unmarked) row and add it to each marked column.

- Replace one zero of the uncovered entries with /. Call its row r.
- If there is a * at position (c, r), unmark the column c and mark row r.
- Find the minimal entry $a \geqslant 0$ of the non-covered entries.
- Subtract a from each unmarked row and add it to each marked column.
- Replace one zero of the uncovered entries with/. Call its row r.
- If there is a * at position (c, r), unmark the column c and mark row r.
- Find the minimal entry $a \geqslant 0$ of the non-covered entries.

IN2238 - Analysis of Three-Dimensional Shapes
4. Feature Representation and Linear Assignment Problem - 22 / 25

1. Subtract from each row its minimum. $\Rightarrow D_{i, j} \geqslant 0$.
2. Replace each zero with a * as long as there is no * in that row or column.
3. Mark each *-column. If N columns are marked go to Step 12.
4. Compute the minimum a of the unmarked entries.
5. Subtract a from the unmarked entries and
add it to the twice marked entries.
6. Find an unmarked " 0 " at position $\left(r, c_{0}\right)$ and replace it with $/$.
7. If there is a * at position (c, r), unmark column c, mark row r and go to Step 4.
8. If there is a * at position $\left(r_{0}, c_{0}\right)$, there is a / at position $\left(r_{1}, c_{0}\right)$. This back-tracking terminate with a /.
9. Exchanging the back-tracked / and * increases the amount of * by 1.
10. Unmark all columns and rows and replace every / with a 0 .
11. If we have N^{*}, go to Step 12. Otherwise go to Step 4.
12. The N stars in the matrix define the optimal permutation.

Features

■ Belongie et al., Shape Matching and Object Recognition Using Shape Context, 2002, IEEE TPAMI (24) 24, 509-521.
■ Manay et al., Integral Invariants and Shape Matching, 2006, IEEE TPAMI (28) 10, 1602-1618.

Hungarian Method

- Kuhn, The Hungarian Method for the Assignment Problem, 1955, Naval Research Logistics Quatery 2, 83-97.
- Munkres, Algorithms for the Assignment and Transportation Problems, 1957, Journal SIAM (5) 1, 32-38.

