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4. Feature Representation and
Linear Assignment Problem 2 / 25

Curves 3 / 25

2D Objects

A 2D object is an open set O Ă R
2 such that B :“ BO is a submanifold of dimension 1.

A result from differential geometry is that a 1D manifold is either homeomorphic to S
1 or to R. Since we want to represent an object in a compact image

domain Ω Ă R
2, we can assume that B is a collection of closed contours (each homeomorphic to S

1).
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Outer Contour

Assuming that B “ BO “
Ťk

i“1
Ci is the union of disjoint contours Ci, it is often enough to consider only the outer contour of B.

This is equivalent of considering a slightly different object O1 Ą O that perceptially is very similar to the original object O.

In conclusion, we assume that C “ BO is a connected submanifold of dimension 1 that is diffeomorphic to S
1. That means we have

c : S1 Ñ R
2 } 9cptq} ‰ 0 p@t P S

1q.

IN2238 - Analysis of Three-Dimensional Shapes 4. Feature Representation and Linear Assignment Problem – 5 / 25
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Contour Length

Given a curve c : S1 Ñ R
2, its length is

lengthpcq “ lim
NÑ8

N
ÿ

k“1

›

›

›
c

´

e
2πk
N

i
¯

´ c
´

e
2πpk´1q

N
i
¯›

›

›

“ lim
NÑ8

N
ÿ

k“1

›

›

›

›

›

›

c
´

e
2πk
N

i
¯

´ c
´

e
2πpk´1q

N
i
¯

2π
N

›

›

›

›

›

›

¨
2π

N

“

ż

S1

}Dcptqrt ¨ is}dt “

ż

S1

} 9cptq}dt

We call c a uniform parametrization of C “ Impcq iff } 9cptq} is constant.
Iff this constant is 1, we call c the arclength parametrization of C.
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Uniform Parametrization

To every curve c : S1 Ñ R
2 of C, we can find a different curve that is parametrized uniformly.

To this end let L :“ lengthpcq and

ℓ : r0, 2πs Ñ r0, 2πs ℓptq “
2π

L
¨

ż t

0

›

› 9c
`

eτ ¨i
˘›

›dτ

The curve ĉ : S1 Ñ R
2 with ĉ

`

et¨i
˘

“ c
´

eℓ
´1ptq¨i

¯

satisfies

›

›

›

›

d

dt
ĉ

`

et¨i
˘

›

›

›

›

“

›

›

›

›

Dc
´

eℓ
´1ptq¨i

¯ ”

eℓ
´1ptq¨i

¨ i
ı

¨
›

›

›
9c
´

eℓ
´1ptq¨i

¯
›

›

›

´1
›

›

›

›

L

2π

“
L

2π
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Curvature

For every uniformly parametrized curve c : S1 Ñ R
2, the expression to compute the curvature can be simplified.

Since we have that x 9cptq, 9cptqy is constant in t, we obtain

0 “
d

dt
x 9cptq, 9cptqy “ 2 x:cptq, 9cptqy

Thus 9cptq and :cptq are orthogonal to one another and

detp 9cptq, :cptqq “ ˘ } 9cptq} ¨ }:cptq} “ ˘
L

2π
}:cptq} .

Therefore, we have for the curvature κpcptqq

|κpcptqq| “

ˇ

ˇ

ˇ

ˇ

detp 9cptq, :cptqq

} 9cptq}3

ˇ

ˇ

ˇ

ˇ

“ }:cptq}
4π2

L2
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Shape Matching 9 / 25

Curvature and Shapes

We already saw that the curvature is invariant with respect to translation and rotation.

Therefore, we can interpret the curvature mapping κ : S1 Ñ R as a
shape representation.

While we excluded the flexibility with respect to translation and rotation, the shape representation via curvature is not unique.

By using an arbitrary self mapping ϕ : S1 Ñ S
1, we change the curve and the curvature representation

c : S1 Ñ R
2

 c ˝ ϕ : S1 Ñ R
2

κ : S1 Ñ R  κ ˝ ϕ : S1 Ñ R

IN2238 - Analysis of Three-Dimensional Shapes 4. Feature Representation and Linear Assignment Problem – 10 / 25
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Shape Matching

c1 c2

O1 O2
M

c1 c2

O1 O2
M

m

A shape matching is a mapping M : BO1 Ñ BO2 that mapps corresponding boundary points onto one another.

It is easier to define a matching between the parametrization domains of both contours, resulting in m : S1 Ñ S
1.

IN2238 - Analysis of Three-Dimensional Shapes 4. Feature Representation and Linear Assignment Problem – 11 / 25
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Feature Representation of 2D Shapes

To perform shape matching, we need a shape feature that describes the “shapeness” of a curve rather than the curve itself. In the last decades a lot of
descriptive shape feature have been developed.

Definition 1. Let „ be the equivalence relation of objects that defines a shape. If we can find for each curve c : S1 Ñ R
2 a mapping fc : S

1 Ñ R
k such that

fcptq “ fc1ptq @c1 „ c and @t P S
1,

we call fc a shape feature representation of c and R
k its feature space.

So far, we showed that curvature is a one-dimensional shape feature with respect to the shape defined by translation and rotation.

IN2238 - Analysis of Three-Dimensional Shapes 4. Feature Representation and Linear Assignment Problem – 12 / 25
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Integral Invariant

Object O Kernel ϕ ϕ ˚ 1O Feature

Other shape features like the “integral invariant” will not simply rely on the boundary C of an object O but also on the object itself.
Let ϕ : R2 Ñ R be a rotation-invariant kernel with compact support, i.e.,

ϕpxq “ϕpR ¨ xq @x P R and R P SOp2q

ϕpxq “0 @x R Bεp0q.

Then, we can define the integral invariant via the following convolution

f : S1 ÑR t ÞÑ

ż

O

ϕpcptq ´ xqdx “ pϕ ˚ 1Oq pcptqq

IN2238 - Analysis of Three-Dimensional Shapes 4. Feature Representation and Linear Assignment Problem – 13 / 25
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Shape Context

A

B
C

Polar-Log Histogram 3 shape points Shape Contexts

The shape context can be seen as an extension of the integral invariants. Instead of one, we use multiple kernels ϕi : R
2 Ñ R in a log-polar scale. The

resulting feature is a high-dimensional histogram representation.

The resulting feature is only translation invariant. To make it rotational invariant, one might use the tangent space at p P C as a baseline. To make the
computation practically feasible, only those rotations are used that are represented by the histogram kernels.

IN2238 - Analysis of Three-Dimensional Shapes 4. Feature Representation and Linear Assignment Problem – 14 / 25
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Comparing Features

Given two curves c1, c2 : S
1 Ñ R

k of the same shape together with their shape feature representations f1, f2 : S
1 Ñ R

k. If the two points c1pt1q and c2pt2q
correspond to one another, we know that f1pt1q “ f2pt2q.

Therefore, we can measure the similarity of two arbitrary points c1pt1q and c2pt2q via distpf1pt2q, f2pt2qq, where the distance function dist : Rk ˆR
k Ñ R

`
0

measures the similarity of two features in R
k.

Common distance functions are

distpκ1, κ2q “pκ1 ´ κ2q2 (Curvature)

distpI1, I2q “pI1 ´ I2q2 (Integral Invariant)

distpCp1q, Cp2qq “
k

ÿ

i“1

`

Cp1q ´ Cp2q
˘2

Cp1q ` Cp2q
(Shape Context)
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Discretization

In order to solve the shape matching problem, we like to work with a finite representation. The process of transforming a continuous problem into such a
“finite” problem is called discretization.

Let us assume that two curves c1, c2 : S
1 Ñ R

2 are provided in a uniform parametrization. Given the corresponding features f1, f2 : S
1 Ñ R

k, we choose the
following discretization

F p1q “
´

f1

´

e
2π
N ¨ i

¯

¨ ¨ ¨ f1

´

e
2π¨j
N ¨ i

¯

¨ ¨ ¨ f1

´

e
2π¨N
N ¨ i

¯¯

P R
kˆN

F p2q “
´

f2

´

e
2π
N ¨ i

¯

¨ ¨ ¨ f2

´

e
2π¨j
N ¨ i

¯

¨ ¨ ¨ f2

´

e
2π¨N
N ¨ i

¯¯

P R
kˆN

This provides us with a cost matrix D P R
NˆN , i.e., Di,j “ distpF

p1q
i , F

p2q
j q, which stores the similarity between the i-th point of the first shape and the

j-th point of the second shape.
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Shape Matching via Linear Assignment

The goal of shape matching is to find corresponding points between two shapes. This is necessary because the feature representation uses a specific
parametrization.

One way of formulating this problem is to look for a permutation π : t1, . . . , Nu Ñ t1, . . . , Nu such that

Epπq “
N
ÿ

i“1

Di,πpiq

is minimized.

In other words, we assign to each shape point of the first shape a unique point of the second shape and the cost that we assign to this assignment depends
“linearly” on this choice.
Therefore, this problem is called Linear Assignment Problem (LAP).

IN2238 - Analysis of Three-Dimensional Shapes 4. Feature Representation and Linear Assignment Problem – 17 / 25
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Hungarian Method 18 / 25

Shape Matching via Linear Assignment

The LAP has to optimize a function over the space of all permutation. Since there are N ! different permuations, it is not clear whether this problem can be
solved in polynomial time.

In 1955 Kuhn presented a method that has a time complexity OpN4q. 1957, Munkres improved the running time to OpN3q. Kuhn’s original work was based
on the work of the Hungarians Kőnig and Egerváry. For that reason, the method is sometimes referred as the Kuhn-Munkres method or the Hungarian
method.

The main idea is to change the entries of the non-negative cost matrix D in order to simplify the problem. If there is a permutation π such that Di,πpiq “ 0,
we know that we found the global optimum.

An important observation is that by adding a value a P R to one row or to one column, we change the value of the minimum by a, but the optimal
permutation is still the same.

IN2238 - Analysis of Three-Dimensional Shapes 4. Feature Representation and Linear Assignment Problem – 19 / 25
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Trivial Solutions

The following cost matrices are minimized by any permutation. Why?

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

4 4 4 4

2 2 2 2

3 3 3 3

0 0 3 0

1 1 4 1

0 0 3 0

0 0 3 0

1 1 6 1

4 4 9 4

2 2 7 2

3 3 8 3

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

IN2238 - Analysis of Three-Dimensional Shapes 4. Feature Representation and Linear Assignment Problem – 20 / 25

Example

90 75 75 80

35 85 55 65

125 95 90 105

45 110 95 115

ñ 245`

C C C

15 * 0 5

* 50 20 30

35 5 * 15

0 65 50 70

■ For each row r: Find the minimum ar.
■ Subtract from each row r its minimum ar.
■ For each “0” in the matrix, replace it by a *

iff there is no * in the same column or row.
■ Mark each column that contains a *.
■ Iff every column is marked, the stars form an optimal permutation.
■ Otherwise, find the minimal entry a ě 0 of the non-covered entries.

17
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Example

250`

C C

15 * 0 / C

* 50 20 25

35 5 * 10

0 65 50 65

ñ 255`

C

20 * 5 / C

* 45 20 20

35 / * 5 C

0 60 50 60

■ Subtract a from each (unmarked) row and add it to each marked column.
■ Replace one zero of the uncovered entries with /. Call its row r.
■ If there is a * at position pc, rq, unmark the column c and mark row r.
■ Find the minimal entry a ě 0 of the non-covered entries.

■ Subtract a from each unmarked row and add it to each marked column.
■ Replace one zero of the uncovered entries with /. Call its row r.
■ If there is a * at position pc, rq, unmark the column c and mark row r.
■ Find the minimal entry a ě 0 of the non-covered entries.

IN2238 - Analysis of Three-Dimensional Shapes 4. Feature Representation and Linear Assignment Problem – 22 / 25
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Example

275`

40 * 5 / C

* 25 0 / C

55 / * 5 C

/ 40 30 40

ñ 275`

40 * 5 0

0 25 0 *

55 0 * 5

* 40 30 40

■ Subtract a from each (unmarked) row and add it to each marked column.
■ Replace one zero of the uncovered entries with /. Call its row r.
■ If there is a * at position pc, rq, unmark the column c and mark row r.
■ Find the minimal entry a ě 0 of the non-covered entries.

■ Subtract a from each unmarked row and add it to each marked column.

■ Replace one zero of the uncovered entries with /. Call its row r.
■ If there is no * in row r, increase the amount of * via back-tracking.
■ If the amount of * is maximal, they form the optimal permutation.

IN2238 - Analysis of Three-Dimensional Shapes 4. Feature Representation and Linear Assignment Problem – 23 / 25
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Hungarian Method

1. Subtract from each row its minimum. ñ Di,j ě 0.
2. Replace each zero with a * as long as there is no * in that row or column.
3. Mark each *-column. If N columns are marked go to Step 12.
4. Compute the minimum a of the unmarked entries.
5. Subtract a from the unmarked entries and

add it to the twice marked entries.
6. Find an unmarked “0” at position pr, c0q and replace it with /.
7. If there is a * at position pc, rq, unmark column c, mark row r

and go to Step 4.
8. If there is a * at position pr0, c0q, there is a / at position pr1, c0q. This back-tracking terminate with a /.
9. Exchanging the back-tracked / and * increases the amount of * by 1.
10. Unmark all columns and rows and replace every / with a 0.
11. If we have N *, go to Step 12. Otherwise go to Step 4.
12. The N stars in the matrix define the optimal permutation.

IN2238 - Analysis of Three-Dimensional Shapes 4. Feature Representation and Linear Assignment Problem – 24 / 25
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