Analysis of 3D Shapes (IN2238)

Frank R. Schmidt
Matthias Vestner

Summer Semester 2016

We also assume that we have a pointwise feature representation $f: \mathbb{S}_{1} \rightarrow \mathbb{R}^{k}$ such that shape-equivalent curves $c_{1}, c_{2}: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ lead to the same feature representation $f_{1} \equiv f_{2}$.

The problem of shape matching can now be formulated as finding a mapping $m: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ such that

$$
f_{1}(s) \approx f_{2}(m(s)) \quad \text { for all } s \in \mathbb{S}^{1}
$$

We would like to use dist ${ }_{0}$ as a distance function for shapes. Nonetheless, we need some extra work in order to obtain a meaningful shape distance. To this end, we need to differentiate between a metric and a semi-metric

Definition 1. Given a space X, we call $d: X \times X \rightarrow \mathbb{R}_{0}^{+}$a metric and X a metric space if

$$
\begin{array}{llll}
d(x, y)=0 & \Leftrightarrow & x=y & \\
\text { (Positive Definiteness) } \\
d(x, y)=d(y, x) & & \text { (Symmetry) } \\
d(x, z) \leqslant d(x, y)+d(y, z) & & & \\
\text { (Triangle Inequality) }
\end{array}
$$

If d is only positive definite and symmetric, but does not necessarily satisfy the triangle inequality, we call d a semi-metric.

5. Continuous 2D Shape Matching

To summarize the last lectures, we assume that a 2D object is an open set $O \subset \mathbb{R}^{2}$ such that $C=\partial O$ is a closed contour that is parameterized via

$$
c: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2} .
$$

If we choose a diffeomorphism $m: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ defined on the parametrization domain \mathbb{S}^{1}, we obtain a different parametrization

$$
c \circ m: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2} .
$$

of the contour $C=\partial O$. Thus, $c: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ is not a unique representation.

IN2238 - Analysis of Three-Dimensional Shapes
5. Continuous 2D Shape Matching - 4 / 24

Solving the shape matching problem results in minimizing the following energy

$$
E_{0}(m)=\int_{\mathbb{S}^{1}} \operatorname{dist}_{\mathcal{F}}\left(f_{1}(s), f_{2} \circ m(s)\right) \mathrm{ds} \quad m: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}
$$

where $\operatorname{dist}_{\mathcal{F}}(\cdot, \cdot)$ measures the similarity of two features in the k-dimensional feature space \mathbb{R}^{k}.

Since $E_{0}(m) \geqslant 0$ for all m, we can define for two curves c_{1} and c_{2} their "distance" as

$$
\operatorname{dist}_{0}\left(c_{1}, c_{2}\right)=\min _{m: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}} \int_{\mathbb{S}^{1}} \operatorname{dist}_{\mathcal{F}}\left(f_{1}(s), f_{2} \circ m(s)\right) \mathrm{ds},
$$

where f_{i} are the feature representation of c_{i} for $i=1,2$.

IN2238 - Analysis of Three-Dimensional Shapes
5. Continuous 2D Shape Matching - 6 / 24

if:

Some Properties of dist $_{0}$
 2D Shape Matching Discretization Optimization

The mapping dist ${ }_{0}$ has the following properties for all object curves $c_{1}, c_{2}: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
\operatorname{dist}_{0}\left(c_{1}, c_{2}\right) & =0 \\
\operatorname{dist}_{0}\left(c_{1}, c_{1} \circ m\right) & =0
\end{aligned}
$$

$$
\text { for } c_{1} \sim c_{2}
$$

$$
\text { for all bijective } m: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}
$$

Nonetheless, the symmetry

$$
\operatorname{dist}_{0}\left(c_{1}, c_{2}\right)=\operatorname{dist}_{0}\left(c_{2}, c_{1}\right)
$$

is only possible if we restrict matchings $m: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ to bijective functions.
Then we expect that given the optimal matching m between c_{1} and c_{2} would lead to the optimal matching m^{-1} between c_{2} and c_{1}.

Looking for bijections $m: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ lead to the LAP, which only considers permutations as a valid matching.

This means, we have with $s_{k}=\exp \left(\frac{2 \pi k}{N} i\right)$

$$
\begin{aligned}
E_{0}(m) & =\int_{\mathbb{S}^{1}} \operatorname{dist}_{\mathcal{F}}\left(f_{1}(s), f_{2} \circ m(s)\right) \mathrm{ds} \\
& \approx \sum_{k=1}^{N} \operatorname{dist}_{\mathcal{F}}\left[f_{1}\left(s_{k}\right), f_{2} \circ m\left(s_{k}\right)\right] \cdot \frac{2 \pi}{N} \\
E_{0}\left(m^{-1}\right) & =\int_{\mathbb{S}^{1}} \operatorname{dist}_{\mathcal{F}}\left(f_{2}(s), f_{1} \circ m^{-1}(s)\right) \mathrm{ds} \\
& \approx \sum_{k=1}^{N} \operatorname{dist}_{\mathcal{F}}\left[f_{1} \circ m^{-1}\left(s_{k}\right), f_{2}\left(s_{k}\right)\right] \cdot \frac{2 \pi}{N}
\end{aligned}
$$

Given two feature representations $f_{1}, f_{2}: \mathbb{S}^{1} \rightarrow \mathbb{R}^{k}$, we want to define a matching energy that provides us with the same minimal value for $g_{1}:=f_{1} \circ \varphi$ and $g_{2}:=f_{2} \circ \varphi$ given a diffeomorphic reparameterization $\varphi: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$.

If m is the optimal matching between f_{1} and f_{2}, we would expect that $\tilde{m}:=\varphi^{-1} \circ m \circ \varphi$ is the optimal matching between g_{1} and g_{2}.

For the previously defined E_{0} we have

$$
\begin{aligned}
& \int_{\mathbb{S}^{1}} \operatorname{dist}_{\mathcal{F}}\left(g_{1}(s), g_{2} \circ \tilde{m}(s)\right) \mathrm{ds}=\int_{\mathbb{S}^{1}} \operatorname{dist}_{\mathcal{F}}\left(f_{1}(\varphi(s)), f_{2} \circ m(\varphi(s))\right) \mathrm{ds} \\
= & \int_{\varphi\left(\mathbb{S}^{1}\right)} \operatorname{dist}_{\mathcal{F}}\left(f_{1}\left(\varphi \circ \varphi^{-1}(s)\right), f_{2} \circ m\left(\varphi \circ \varphi^{-1}(s)\right)\right) \cdot \dot{\varphi}\left(\varphi^{-1}(s)\right)^{-1} \mathrm{ds} \\
= & \int_{\mathbb{S}^{1}} \operatorname{dist}_{\mathcal{F}}\left(f_{1}(s), f_{2} \circ m(s)\right) \cdot \dot{\varphi}\left(\varphi^{-1}(s)\right)^{-1} \mathrm{ds}
\end{aligned}
$$

IN2238 - Analysis of Thece Dinensional Shapes

5. Continuous 2D Shape Matching - 11 / 24

Whtm	Line Integral				$\square \square$
	2D Shape Matching	Discretization	Optimization		

Given a contour $\Gamma \subset \mathbb{R}^{N}$ and a scalar function $f: \Gamma \rightarrow \mathbb{R}$, we would like to define the line integral $\int_{\Gamma} f(s) \mathrm{ds}$. To this end, let us assume that we have a diffeomorphic coordinate map $c:[0,1] \rightarrow \Gamma$.

Then, we can define the line integral as

$$
\begin{aligned}
\int_{\Gamma} f(s) \mathrm{ds} & =\lim _{N \rightarrow \infty} \sum_{i=1}^{N} f \circ c\left(\frac{i}{N}\right)\left\|c\left(\frac{i}{N}\right)-c\left(\frac{i-1}{N}\right)\right\| \\
& =\int_{0}^{1} f \circ c(t) \cdot\left\|c^{\prime}(t)\right\| \mathrm{dt} \\
& =\int_{0}^{1} f \circ c(t) \cdot \sqrt{\operatorname{det}\left(c^{\prime}(t)^{\top} c^{\prime}(t)\right)} \mathrm{dt}
\end{aligned}
$$

Since only feature information is used, we can see that

$$
\operatorname{dist}_{1}\left(C_{1}, C_{2}\right):=\underset{m: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}}{\operatorname{argmin}} E_{1}^{\left(C_{1}, C_{2}\right)}(m)
$$

is a positive function defined on a shape space.
IN2238 - Analysis of Three-Dimensional Shapes

We obtain for a contour C that

$$
\operatorname{dist}_{1}(C, C) \leqslant E_{1}^{(C, C)}(\mathrm{id})=0
$$

Whether dist ${ }_{1}$ is positive definite depends on the chosen features. For curvature, dist $_{1}$ is positive definite.
Since, we always have $E_{1}^{\left(C_{1}, C_{2}\right)}(m)=E_{1}^{\left(C_{2}, C_{1}\right)}\left(m^{-1}\right)$, we know that dist ${ }_{1}$ is symmetric. Thus, dist $_{1}$ provides us with a semi-metric of our shape space.

A shape matching is a mapping $M: \partial O_{1} \rightarrow \partial O_{2}$ that maps corresponding boundary points onto one another. Thus, we assume that N points are selected from each contour.

We are interested in the matching contour $\Gamma(m)$, which can be described as a closed contour on the grid defined by N^{2} product nodes.

$$
\{[(i, j),(i \oplus 1, j \oplus 1)] \mid(i, j) \in \mathcal{V}\}
$$

The optimal $m: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ shall minimize the energy $E_{1}(m):=\int_{\Gamma(m)} D(s) \mathrm{ds}$.
Since every edge in \mathcal{G} corresponds to a potential subset of $\Gamma(m)$, we define

$$
\begin{aligned}
w\left(\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)\right): & : \frac{D_{i_{1}, j_{1}}+D_{i_{2}, j_{2}}}{2} \sqrt{\left\|v_{1}-u_{1}\right\|^{2}+\left\|v_{2}-u_{2}\right\|^{2}} \\
& \approx \int_{\overrightarrow{u v}} D(s) \mathrm{ds},
\end{aligned}
$$

where $u=\left(u_{1}, u_{2}\right)=\left(x_{i_{1}}, y_{j_{1}}\right)$ and $v=\left(v_{1}, v_{2}\right)=\left(x_{i_{2}}, y_{j_{2}}\right)$.

IN2238 - Analysis of Three- Dimensional Shapes

5. Continuous 2D Shape Matching - 19 / 24

6. Guess an initial correspondence $c_{1}(x)$ on Shape 1 and $c_{2}(y)$ on Shape 2.
7. Cut the torus open along the curves $\{x\} \times \mathbb{S}^{1}$ and $\mathbb{S}^{1} \times\{y\}$.
8. Find the shortest path between (x, y) and $(x+2 \pi, y+2 \pi)$.

- Step 3 can be done efficiently using dynamic time warping. $\mathcal{O}\left(\mathrm{N}^{2}\right)$
- Iterating over initial correspondences slows the method down. $\mathcal{O}\left(\mathrm{N}^{3}\right)$

IN2238 - Analysis of Three-Dimensional Shapes	5. Continuous 2D Shape Matching - $21 / 24$

Let us assume that we have N ordered points $x_{0}, \ldots, x_{N-1} \in \mathbb{R}^{2}$ of the first contour C_{1} and N ordered points $y_{0}, \ldots, y_{N-1} \in \mathbb{R}^{2}$ of the second contour. In addition, we have the distance of the features stored in $D \in \mathbb{R}^{N \times N}$, i.e., $d_{i j}=\operatorname{dist}_{\mathcal{F}}\left(f_{1} \circ c_{1}^{-1}\left(x_{i}\right), f_{2} \circ c_{2}^{-1}\left(y_{j}\right)\right)$.

Now we define the graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ that discretizes the torus T :

$$
\begin{aligned}
\mathcal{V}= & \{0, \ldots N-1\} \times\{0, \ldots N-1\} & & \\
\mathcal{E}= & \{[(i, j),(i \oplus 1, j)] \mid(i, j) \in \mathcal{V}\} \cup & & \text { (horizontal edges) } \\
& \{[(i, j),(i, j \oplus 1)] \mid(i, j) \in \mathcal{V}\} \cup & & \text { (vertical edges) }
\end{aligned}
$$ (diagonal edges),

where $a \oplus b:=(a+b) \bmod N$.
In a last step we need to define a weight function $w: \mathcal{E} \rightarrow \mathbb{R}$ that encodes our energy function E_{1}.

IN2238 - Analysis of Three-Dimensional Shapes
5. Continuous 2D Shape Matching - 18 / 24

Optimization

Applications of Dynamic Time Warping

■ Sankoff and Kruskal, Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence Comparison, 1983, Addison-Wesley, Reading, MA.

- Geiger et al., Dynamic programming for detecting, tracking and matching deformable contours, 1995, IEEE PAMI 17 (3), 294-302.

Matching as Shortest Circular Path

■ Maes, On a cyclic string-to-string correction problem, 1990.
■ Schmidt et al., Fast Matching of Planar Shapes in Sub-cubic Runtime, 2007, IEEE ICCV.

