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To summarize the last lectures, we assume that a 2D object is an open set O Ă R2

such that C “ BO is a closed contour that is parameterized via

c : S1 Ñ R2.

If we choose a diffeomorphism m : S1 Ñ S1 defined on the parametrization domain
S1, we obtain a different parametrization

c ˝ m : S1 Ñ R2.

of the contour C “ BO. Thus, c : S1 Ñ R2 is not a unique representation.

2D Shapes

2D Shape Matching Discretization Optimization

IN2238 - Analysis of Three-Dimensional Shapes 5. Continuous 2D Shape Matching – 5 / 24

A

B C

We also assume that we have a pointwise feature representation f : S1 Ñ Rk such
that shape-equivalent curves c1, c2 : S1 Ñ R2 lead to the same feature
representation f1 ” f2.

The problem of shape matching can now be formulated as finding a mapping
m : S1 Ñ S1 such that

f1psq « f2pmpsqq for all s P S1

2D Shape Distance (näıve version)
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Solving the shape matching problem results in minimizing the following energy

E0pmq “
ż

S1
distF pf1psq, f2 ˝ mpsqqds m : S1 Ñ S1,

where distF p¨, ¨q measures the similarity of two features in the k-dimensional
feature space Rk.

Since E0pmq ě 0 for all m, we can define for two curves c1 and c2 their “distance”
as

dist0pc1, c2q “ min
m : S1ÑS1

ż

S1
distF pf1psq, f2 ˝ mpsqqds,

where fi are the feature representation of ci for i “ 1, 2.

Metric and Semi-Metric
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We would like to use dist0 as a distance function for shapes. Nonetheless, we need
some extra work in order to obtain a meaningful shape distance. To this end, we
need to differentiate between a metric and a semi-metric.

Definition 1. Given a space X, we call d : X ˆ X Ñ R`
0 a metric and X a

metric space if

dpx, yq “ 0 ô x “ y (Positive Definiteness)

dpx, yq “ dpy, xq (Symmetry)

dpx, zq ď dpx, yq ` dpy, zq (Triangle Inequality)

If d is only positive definite and symmetric, but does not necessarily satisfy the
triangle inequality, we call d a semi-metric.

Some Properties of dist0
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The mapping dist0 has the following properties for all object curves
c1, c2 : S1 Ñ R2

dist0pc1, c2q “0 for c1 „ c2

dist0pc1, c1 ˝ mq “0 for all bijective m : S1 Ñ S1

Nonetheless, the symmetry

dist0pc1, c2q “ dist0pc2, c1q
is only possible if we restrict matchings m : S1 Ñ S1 to bijective functions.

Then we expect that given the optimal matching m between c1 and c2 would lead
to the optimal matching m´1 between c2 and c1.
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Looking for bijections m : S1 Ñ S1 lead to the LAP, which only considers
permutations as a valid matching.

This means, we have with sk “ exp
`
2πk
N i

˘

E0pmq “
ż

S1
distF pf1psq, f2 ˝ mpsqqds

«
Nÿ

k“1

distF rf1 pskq , f2 ˝ m pskqs ¨ 2π
N

E0pm´1q “
ż

S1
distF pf2psq, f1 ˝ m´1psqqds

«
Nÿ

k“1

distF
“
f1 ˝ m´1 pskq , f2 pskq‰ ¨ 2π

N

Restrictions of LAP
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The LAP leads to a symmetric distance between object curves c1 and c2, if the
features are sampled equidistantly with respect to the chosen parametrization. As
a result, dist0 is not independent of the parametrization, even for the same curve.
Thus, LAP does not compute a shape distance.

This problem can be resolved by only allowing uniform parameterizations of curves.
Nonetheless, this might constrain the choice of possible matchings rather
dramatically.

Another disadvantage of LAP is that it does not smoothly map one contour onto
the other. In other words, m : S1 Ñ S1 is just a bijection and not a
homeomorphism or diffeomorphism.

Our goal is it now to define a matching energy that only considers diffeomorphic
matchings m : S1 Ñ S1. In addition, the minimum of such an energy should give
rise to a semi-metric for shapes.

Diffeomorphic Matching
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Given two feature representations f1, f2 : S1 Ñ Rk, we want to define a matching
energy that provides us with the same minimal value for g1 :“ f1 ˝ ϕ and
g2 :“ f2 ˝ ϕ given a diffeomorphic reparameterization ϕ : S1 Ñ S1.

If m is the optimal matching between f1 and f2, we would expect that
m̃ :“ ϕ´1 ˝ m ˝ ϕ is the optimal matching between g1 and g2.

For the previously defined E0 we have

ż

S1
distF pg1psq, g2 ˝ m̃psqqds “

ż

S1
distF pf1pϕpsqq, f2 ˝ mpϕpsqqqds

“
ż

ϕpS1q
distF pf1pϕ ˝ ϕ´1psqq, f2 ˝ mpϕ ˝ ϕ´1psqqq ¨ 9ϕpϕ´1psqq´1ds

“
ż

S1
distF pf1psq, f2 ˝ mpsqq ¨ 9ϕpϕ´1psqq´1ds

Geometrically Motivated Distance
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Let us assume that two contours C1, C2 Ă R2 together with their diffeomorphic
parametrization ci : S1 Ñ Ci are given. Further let fi : S1 Ñ Rk be their feature
reparameterization.

Then we define the torus T :“ C1 ˆ C2 and the cost function

D : T Ñ R`
0 px, yq ÞÑ distF pf1 ˝ c´1

1 pxq, f2 ˝ c´1
2 pyqq

Note that neither T nor D depend on the specific parametrization c1 or c2.

Given a matching m : S1 Ñ S1, we define the 1D manifold

Γpmq :“ tpx, yq P T |m ˝ c´1
1 pxq “ c´1

2 pyqu
and a new energy

E
pC1,C2q
1 pmq “

ż

Γpmq
Dpsqds.

Line Integral
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Given a contour Γ Ă RN and a scalar function f : Γ Ñ R, we would like to define
the line integral

ş
Γ fpsqds. To this end, let us assume that we have a diffeomorphic

coordinate map c : r0, 1s Ñ Γ.

Then, we can define the line integral as

ż

Γ
fpsqds “ lim

NÑ8

Nÿ

i“1

f ˝ c

ˆ
i

N

˙ ››››c
ˆ

i

N

˙
´ c

ˆ
i ´ 1

N

˙››››

“
ż 1

0
f ˝ cptq ¨ ››c1ptq››dt

“
ż 1

0
f ˝ cptq ¨

b
det pc1ptqJc1ptqqdt

Diffeomorphic Matching

2D Shape Matching Discretization Optimization

IN2238 - Analysis of Three-Dimensional Shapes 5. Continuous 2D Shape Matching – 14 / 24

This definition leads to the following representation of the energy E1

E
pC1,C2q
1 pmq “

ż

Γpmq
Dpsqds “

ż

Γpmq
distF pf1 ˝ c´1

1 ps1q, f2 ˝ c´1
2 ps2qqds

“
ż

S1
distF pf1ptq, f2 ˝ mptqq ¨

c
9c1ptq2 ` d

dt
pc2 ˝ mqptq2dt,

which becomes for uniformly parameterized curves of same length 2π

E1pmq “
ż

S1
distF pf1ptq, f2 ˝ mptqq ¨ a

1 ` 9mptq2dt,

While this energy looks rather technical, it does not depend on the specific
parameterizations of c1 and c2.

Properties of dist1
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Since only feature information is used, we can see that

dist1pC1, C2q :“ argmin
m : S1ÑS1

E
pC1,C2q
1 pmq

is a positive function defined on a shape space.

We obtain for a contour C that

dist1pC,Cq ď E
pC,Cq
1 pidq “ 0.

Whether dist1 is positive definite depends on the chosen features.
For curvature, dist1 is positive definite.

Since, we always have E
pC1,C2q
1 pmq “ E

pC2,C1q
1 pm´1q, we know that dist1 is

symmetric. Thus, dist1 provides us with a semi-metric of our shape space.

Discretization

2D Shape Matching Discretization Optimization



Matching Contour

2D Shape Matching Discretization Optimization

IN2238 - Analysis of Three-Dimensional Shapes 5. Continuous 2D Shape Matching – 17 / 24

c1 c2

M

m

A shape matching is a mapping M : BO1 Ñ BO2 that maps corresponding
boundary points onto one another. Thus, we assume that N points are selected
from each contour.

We are interested in the matching contour Γpmq, which can be described as a
closed contour on the grid defined by N2 product nodes.

Graph Representation
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Let us assume that we have N ordered points x0, . . . , xN´1 P R2 of the first
contour C1 and N ordered points y0, . . . , yN´1 P R2 of the second contour. In
addition, we have the distance of the features stored in D P RNˆN , i.e.,
dij “ distF pf1 ˝ c´1

1 pxiq, f2 ˝ c´1
2 pyjqq.

Now we define the graph G “ pV, Eq that discretizes the torus T :

V “t0, . . . N ´ 1u ˆ t0, . . . N ´ 1u
E “trpi, jq, pi ‘ 1, jqs|pi, jq P VuY (horizontal edges)

trpi, jq, pi, j ‘ 1qs|pi, jq P VuY (vertical edges)

trpi, jq, pi ‘ 1, j ‘ 1qs|pi, jq P Vu (diagonal edges),

where a ‘ b :“ pa ` bq mod N .

In a last step we need to define a weight function w : E Ñ R that encodes our
energy function E1.

Edge Weights
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The optimal m : S1 Ñ S1 shall minimize the energy E1pmq :“ ş
Γpmq Dpsqds.

Since every edge in G corresponds to a potential subset of Γpmq, we define

wppi1, j1q, pi2, j2qq :“Di1,j1 ` Di2,j2

2

b
}v1 ´ u1}2 ` }v2 ´ u2}2

«
ż

ÝÑuv Dpsqds,

where u “ pu1, u2q “ pxi1 , yj1q and v “ pv1, v2q “ pxi2 , yj2q.

Optimization
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1. Guess an initial correspondence c1pxq on Shape 1 and c2pyq on Shape 2.
2. Cut the torus open along the curves txu ˆ S1 and S1 ˆ tyu.
3. Find the shortest path between px, yq and px ` 2π, y ` 2πq.
■ Step 3 can be done efficiently using dynamic time warping. OpN2q
■ Iterating over initial correspondences slows the method down. OpN3q

Matching in Subcubic Runtime
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1. Iteratively, divide each searching region into two regions.
2. Compute the shortest path for the boundary regions independently.
3. This leads to a better region division.

Runtime
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