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If a 2D shape S stems from a 2D object O with a connected 1D-boundary, we
usually represent it by two different functions

c : S1 Ñ R2 f : S1 Ñ Rk,

where

■ c describes a specific parametrization of the boundary of a specific object
O corresponding to the shape S.

■ f describes the shape features, which help to describe the shape S and not
the object O.

Matching of Two 2D Shapes
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Given two shapes S1 and S2 with their representations c1, c2 : S1 Ñ R2 as well as
f1, f2 : S1 Ñ Rk, we define the matching energy for an arbitrary matching function
m : S1 Ñ S1 as

ES1,S2pmq “
ż

S1
distF pf1ptq, f2 ˝ mptqq ¨

c
9c1ptq2 ` d

dt
pc2 ˝ mqptq2dt.

This leads to a semi-metric distp¨, ¨q of shapes

distpS1, S2q “ min
mPDiffpS1q

ES1,S2pmq,

where DiffpS1q describes the set of diffeomorphic mappings m : S1 Ñ S1.

Classification Task
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A common task in computer vision is known as classification. Here, we assume a
set O of possible observations, a smaller class C of different classes and a
classifier

Φ: O Ñ C

that assign to each observation its unique class.

In general, neither O nor Φ are known. The goal of classification is to estimate Φ
by providing a certain amount of classified observations.

pSi, ℓiqiPI contains observations Si Ă RN and class labels ℓi P C. Estimating Φ can
be formulated as finding a function Φ̂ : RN Ñ C such that Φ̂pSiq “ ℓi. Estimating
Φ based on certain observations is called training.

Most of the known classification methods use the canonical metric on RN in order
to train the classifier.

Classification of Shapes
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If we want to classify shapes, we have more information about the observation
space, i.e., shape space. Instead of using the metric of some embedding space, we
can directly use the semi-metric of the shape space.

In fact, it is common to use a simplified classifier framework in order to evaluate
shape distances. Given a shape dataset S, one computes in a first step for each
pair pSi, Sjq P S2 their shape distance.

In a second step, we retrieve for each shape Si its k nearest neighbors Sk
i , i.e., the

k shapes of a given dataset that have the smallest distance with respect to Si.

Evaluating how well these k nearest neighbors coincide with the perceptual shape
class gives us a measure on how well the shape distance measures the practical
shape similarity that we like to model.

MPEG-7 CE-Shape-1 Part-B
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MPEG-7 is a standard to describe multimedia content. In contrast to MPEG-1,
MPEG-2 and MPEG-4 it does not introduce a new encoding scheme. Instead it
provides meta-information.

One of the core experiments was with respect to shape. The CE-Shape-1
contains 4 different databases. From particular interest is Part-B.

This database contains 70 shape classes with 20 objects contained in each class.
This provides us with a very big database of 1400 shapes. Computing all pairwise
distances results in about 2 million shape matching tasks.

The bull’s eye test with respect to the MPEG7 shape database asks for the
computation of the 40 nearest neighbors. The recall of a specific shape is the ratio
of correctly retrieved shapes and 20. The bull’s eye score is the average recall for
all 1400 objects. At this point, every method achieved a score below 90%.



Distance-Driven Retrieval
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Simultaneous Matching
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Lack of Knowledge
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If we compare two objects of the same shape class, we might miss some vital
information of the whole shape class.

For that reason, we would expect a better shape matching if we consider multiple
shapes at the same time in order to obtain more information.

This leads us to the problem of simultaneous shape matching.

Outline
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?

Given two shapes (discretized by N points each) and an initial match, we can
compute the optimal matching in OpN2q.
We want to extend this idea to multiple shapes. This can be cast as finding a
shortest path in a higher-dimensional graph.

After finding such a matching path, we like to use it in order to define a mean
shape of multiple shapes.

Simultaneous Shape Matching
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For d different shapes, the optimal matching m “ pm1, . . . ,mdq : S1 Ñ pS1qd shall
minimize the energy functional:

Epmq :“
dÿ

i,j“1

ESi,Sj pmijq, mij “ mj ˝ m´1
i

and can be represented as a loop on the d-dimensional torus S1 ˆ . . . ˆ S1.

Relationship to 2-Matching
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Given an initial match of d shapes (discretized by N nodes each), results in a
graph of Nd nodes and a running time for the optimal path of OpNdq.
Testing also all Nd´1 initial matches leads us to a running time of OpN2d`1q.
We were only able to reduce this running time for d “ 2, because the resulting
graph is planar and we can apply a binary search of the graph’s domain.

Approximating Energy
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Instead of minimizing

Epm1, . . . ,mdq “
dÿ

i,j“1

ESi,Sj pmijqlooooomooooon
pairwise matching

mij :“ mj ˝ m´1
i

we would like minimize the following energy

Êpm11, . . . ,mddq “
dÿ

i,j“1

”
ESi,Sj pmijqlooooomooooon

pairwise matching

`

γ ¨
ż

Γpmijq

dÿ

k“1

}pmij ´ mkj ˝ mikq psq}loooooooooooooomoooooooooooooon
consistency costs

ds
ı



Minimizing the Approximative Energy
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1. Start with the 2-matchings mij that minimize ES1,S2 .

2. Minimize the functional Êp¨q with respect to mij

for each mij until convergence.

■ Instead of OpNdq graph nodes, we need only Opd2 ¨ N2q.
■ Instead of OpN2d´1q steps, every iteration needs only Opd2 ¨ N2 logpNqq.

Results of the Approximation
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γ “ 10´6

γ “ 10´4

Semi-Metrical Mean
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Mean

Binary Matching Simultaneous Matching Semi-Metrical Mean

IN2238 - Analysis of Three-Dimensional Shapes 6. Matching Multiple 2D Shapes – 20 / 25

If we take n samples x1, . . . , xn P Rn of an n-dimensional vector space, the mean
is usually defined as

µ “ 1

n

nÿ

i“1

xi

Interestingly, it is equivalent to the following formulation

µ “ argmin
x˚PRn

nÿ

i“1

}xi ´ x˚}2

Thus, we can define a mean µ of n samples x1, . . . , xn P X of a metrical or even
semi-metrical space X as

µ “ argmin
x˚PX

nÿ

i“1

distpxi, x˚q2

Karcher Mean
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Karcher was the first who introduced this mean for manifolds.
Note that a manifold M becomes a metric via

distpx, yq “ min
c : r0,1sÑM,
cp0q“x,cp1q“y

lengthpcq

The Karcher mean is well-defined if the samples are close to one another.

For samples that are widely spread on a manifold, there might be multiple Karcher
means that minimize the involved energy function.

Matching-Driven Mean
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We like to define the mean of a collection S “ tS1, . . . , Sdu of shapes with respect
to the (approximative) simultaneous shape matching functions pmijqi,j“1,...,d

The feature representation fS of this collection shall minimize the energy

f˚ ÞÑ
dÿ

i“1

ż

Γpm1iq
distF pf˚ps1q, fips2qq2 ds.

fS

Shape Retrieval

Binary Matching Simultaneous Matching Semi-Metrical Mean

IN2238 - Analysis of Three-Dimensional Shapes 6. Matching Multiple 2D Shapes – 23 / 25

Mean Shape Retrieval
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