Analysis of 3D Shapes (IN2238)

Frank R. Schmidt Matthias Vestner

Summer Semester 2016

6. Matching Multiple 2D Shapes	
Binary Matching	÷
2D Shape	
Matching of Two 2D Shapes	
Matching of Two 2D Shapes	(
Classification of Shapes	- ·
MPEG-7 CE-Shape-1 Part-B	
Classification of Shapes MPEG-7 CE-Shape-1 Part-B Distance-Driven Retrieval	
Simultaneous Matching	1(
Lack of Knowledge	1
Outline	12
Simultaneous Shape Matching	
Relationship to 2-Matching	14
Running Time of <i>d</i> -Matching	1!
Approximating Energy	16
Minimizing the Approximative Energy	

Results of the Approximation	. 18
Semi-Metrical Mean	19
Mean	. 20
Karcher Mean	. 21
Matching-Driven Mean	. 22
Shape Retrieval	. 23
Mean Shape Retrieval	. 24
Literature.	. 25

Binary Matching

3 / 25

2D Shape

If a 2D shape S stems from a 2D object O with a connected 1D-boundary, we usually represent it by two different functions

$$c: \mathbb{S}^1 \to \mathbb{R}^2$$

$$f: \mathbb{S}^1 \to \mathbb{R}^k$$
,

where

- \blacksquare c describes a specific parametrization of the boundary of a specific object O corresponding to the shape S.
- \blacksquare f describes the **shape features**, which help to describe the shape S and not the object O.

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 4 / 25

Matching of Two 2D Shapes

Given two shapes S_1 and S_2 with their representations $c_1, c_2 : \mathbb{S}^1 \to \mathbb{R}^2$ as well as $f_1, f_2 : \mathbb{S}^1 \to \mathbb{R}^k$, we define the matching energy for an arbitrary matching function $m : \mathbb{S}^1 \to \mathbb{S}^1$ as

$$E_{S_1,S_2}(m) = \int_{\mathbb{S}^1} \operatorname{dist}_{\mathcal{F}}(f_1(t), f_2 \circ m(t)) \cdot \sqrt{\dot{c}_1(t)^2 + \frac{\mathrm{d}}{\mathrm{dt}} (c_2 \circ m)(t)^2} \mathrm{dt}.$$

This leads to a semi-metric $dist(\cdot, \cdot)$ of shapes

$$\operatorname{dist}(S_1, S_2) = \min_{m \in \operatorname{Diff}(\mathbb{S}^1)} E_{S_1, S_2}(m),$$

where $\mathrm{Diff}(\mathbb{S}^1)$ describes the set of diffeomorphic mappings $m\colon \mathbb{S}^1\to \mathbb{S}^1.$

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes - 5 / 25

Classification Task

A common task in computer vision is known as classification. Here, we assume a set \mathcal{O} of possible observations, a smaller class \mathcal{C} of different classes and a classifier

$$\Phi \colon \mathcal{O} \to \mathcal{C}$$

that assign to each observation its unique class.

In general, neither \mathcal{O} nor Φ are known. The goal of classification is to estimate Φ by providing a certain amount of classified observations.

 $(S_i, \ell_i)_{i \in \mathcal{I}}$ contains observations $S_i \subset \mathbb{R}^N$ and class labels $\ell_i \in \mathcal{C}$. Estimating Φ can be formulated as finding a function $\hat{\Phi} \colon \mathbb{R}^N \to \mathcal{C}$ such that $\hat{\Phi}(S_i) = \ell_i$. Estimating Φ based on certain observations is called **training**.

Most of the known classification methods use the canonical metric on \mathbb{R}^N in order to train the classifier.

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes - 6 / 25

Classification of Shapes

If we want to classify shapes, we have more information about the observation space, *i.e.*, **shape space**. Instead of using the metric of some embedding space, we can directly use the **semi-metric** of the shape space.

In fact, it is common to use a simplified classifier framework in order to evaluate shape distances. Given a shape dataset S, one computes in a first step for each pair $(S_i, S_j) \in S^2$ their shape distance.

In a second step, we **retrieve** for each shape S_i its k nearest neighbors S_i^k , i.e., the k shapes of a given dataset that have the smallest distance with respect to S_i .

Evaluating how well these k nearest neighbors coincide with the perceptual shape class gives us a measure on how well the shape distance measures the practical shape similarity that we like to model.

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 7 / 25

MPEG-7 CE-Shape-1 Part-B

MPEG-7 is a standard to describe multimedia content. In contrast to MPEG-1, MPEG-2 and MPEG-4 it does not introduce a new encoding scheme. Instead it provides meta-information.

One of the core experiments was with respect to shape. The CE-Shape-1 contains 4 different databases. From particular interest is Part-B.

This database contains 70 shape classes with 20 objects contained in each class. This provides us with a very big database of 1400 shapes. Computing all pairwise distances results in about 2 million shape matching tasks.

The **bull's eye test** with respect to the MPEG7 shape database asks for the computation of the 40 nearest neighbors. The **recall** of a specific shape is the ratio of correctly retrieved shapes and 20. The **bull's eye score** is the average recall for all 1400 objects. At this point, every method achieved a score below 90%.

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 8 / 25

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 9 / 25

Simultaneous Matching 10 / 25

Lack of Knowledge

If we compare two objects of the same shape class, we might miss some vital information of the whole shape class.

For that reason, we would expect a better shape matching if we consider multiple shapes at the same time in order to obtain more information.

This leads us to the problem of simultaneous shape matching.

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes $-11\ /\ 25$

Outline

Given two shapes (discretized by N points each) and an initial match, we can compute the optimal matching in $\mathcal{O}(N^2)$.

We want to extend this idea to multiple shapes. This can be cast as finding a shortest path in a higher-dimensional graph.

After finding such a matching path, we like to use it in order to define a mean shape of multiple shapes.

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 12 / 25

Simultaneous Shape Matching

For d different shapes, the optimal matching $m=(m_1,\ldots,m_d):\mathbb{S}^1\to(\mathbb{S}^1)^d$ shall minimize the energy functional:

$$E(m) := \sum_{i,j=1}^{d} E_{S_i,S_j}(m_{ij}),$$

$$m_{ij} = m_j \circ m_i^{-1}$$

and can be represented as a loop on the d-dimensional torus $\mathbb{S}^1 \times \ldots \times \mathbb{S}^1$.

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 13 / 25

Relationship to 2-Matching

Running Time of *d*-Matching

Given an initial match of d shapes (discretized by N nodes each), results in a graph of N^d nodes and a running time for the optimal path of $\mathcal{O}(N^d)$.

Testing also all N^{d-1} initial matches leads us to a running time of $\mathcal{O}(N^{2d+1})$.

We were only able to reduce this running time for d=2, because the resulting graph is planar and we can apply a binary search of the graph's domain.

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 15 / 25

Approximating Energy

Instead of minimizing

$$E(m_1,\ldots,m_d) = \sum_{i,j=1}^d \underbrace{E_{S_i,S_j}(m_{ij})}_{\mathsf{pairwise \ matching}} \qquad m_{ij} := m_j \circ m_i^{-1}$$

we would like minimize the following energy

$$\begin{split} \hat{E}(m_{11}, \dots, m_{dd}) &= \sum_{i,j=1}^{d} \bigg[\underbrace{E_{S_{i}, S_{j}}(m_{ij})}_{\text{pairwise matching}} + \\ \gamma \cdot \int_{\Gamma(m_{ij})} \sum_{k=1}^{d} \underbrace{\|(m_{ij} - m_{kj} \circ m_{ik}) \, (s)\|}_{\text{consistency costs}} \, \mathrm{d}s \bigg] \end{split}$$

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 16 / 25

Minimizing the Approximative Energy

- 1. Start with the 2-matchings m_{ij} that minimize E_{S_1,S_2} .
- 2. Minimize the functional $\hat{E}(\cdot)$ with respect to m_{ij} for each m_{ij} until convergence.
- Instead of $\mathcal{O}(N^d)$ graph nodes, we need only $\mathcal{O}(d^2 \cdot N^2)$. Instead of $\mathcal{O}(N^{2d-1})$ steps, every iteration needs only $\mathcal{O}(d^2 \cdot N^2 \log(N))$.

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 17 / 25

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 18 / 25

Semi-Metrical Mean

Mean

If we take n samples $x_1, \ldots, x_n \in \mathbb{R}^n$ of an n-dimensional vector space, the mean is usually defined as

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Interestingly, it is equivalent to the following formulation

$$\mu = \underset{x^* \in \mathbb{R}^n}{\operatorname{argmin}} \sum_{i=1}^n \|x_i - x^*\|^2$$

Thus, we can define a mean μ of n samples $x_1,\ldots,x_n\in X$ of a metrical or even semi-metrical space X as

$$\mu = \underset{x^* \in X}{\operatorname{argmin}} \sum_{i=1}^n \operatorname{dist}(x_i, x^*)^2$$

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes - 20 / 25

19 / 25

Karcher Mean

Karcher was the first who introduced this mean for manifolds. Note that a manifold ${\cal M}$ becomes a metric via

$$\operatorname{dist}(x,y) = \min_{\substack{c : [0,1] \to M, \\ c(0) = x, c(1) = y}} \operatorname{length}(c)$$

The Karcher mean is well-defined if the samples are close to one another.

For samples that are widely spread on a manifold, there might be multiple Karcher means that minimize the involved energy function.

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 21 / 25

Matching-Driven Mean

We like to define the mean of a collection $\mathcal{S}=\{S_1,\ldots,S_d\}$ of shapes with respect to the (approximative) simultaneous shape matching functions $(m_{ij})_{i,j=1,\ldots,d}$

The feature representation $f_{\mathcal{S}}$ of this collection shall minimize the energy

$$f^* \mapsto \sum_{i=1}^d \int_{\Gamma(m_{1i})} \operatorname{dist}_{\mathcal{F}} (f^*(s_1), f_i(s_2))^2 \, \mathrm{ds}.$$

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes -22 / 25

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 23 / 25

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 24 / 25

Literature

MPEG7

- MPEG7 CE Shape-1 Part-B, http://www.cis.temple.edu/~latecki/TestData/mpeg7shapeB.tar.gz
- Belongie et al., Shape Matching and Object Recognition Using Shape Context, 2002, IEEE TPAMI (24) 24, 509–521.
- Bai et al., Learning Context Sensitive Shape Similarity by Graph Transduction, 2009, IEEE TPAMI (32) 5, 861–874.

Mean

- Karcher, Riemannian center of mass and mollifier smoothing, 1977, Comm. Pure Appl. Math. 30 (5), 509–541.
- Schmidt et al., Intrinsic Mean for Semimetrical Shape Retrieval via Graph Cuts, 2007, Pattern Recognition (Proc. DAGM), LNCS 4713, 446–455.

IN2238 - Analysis of Three-Dimensional Shapes

6. Matching Multiple 2D Shapes – 25 / 25