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Each coordinate map = : U — R comes with its own first fundamental form

g=Dz"Daz.

Notice that g is in general not constant (as is Dz) but is a (smooth) function
g:U = R¥>2,
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Since Dz has full rank the first fundamental form is a symmetric positive definit.
Sometimes g is also called Riemannian metric.
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Recap integration

Last week we have seen how to integrate scalar functions f : S — R defined on

a surface:
[ 1= [ statw) N
S U

The matrix g = DzT Dz is called first fundamental form of z.

det((Dz)" (Da))du = /U f(a(w)
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The first fundamental form ¢ defines an inner product such that we can express
length and angles of tangent vectors in local coordinates.
Let w; = ay01z(u) + a20x(u) and wy = B1012(w) + F20:2(u) be two tangent

vectors at z(u) =p € S.
[wi]* = (Dz - a, Dz - a)ps = o’ g(u)a = (0, @)g(w)
(w1, w2) = {a, Bg(w)
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Length of a curve

The first fundamental form gives us the posiibility to measure the length of a
curve defined on the manifold S.

Let I be an interval and y : I — U be a curve in the parameter domain with
[4]l # 0. Then ¢ =z oy : I — S defines a curve on the manifold, with ||¢|| # 0
(Why?).

The length of ¢ is given by

||c | dt = HDz ()| dt =

J

f
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If the off-diagonal entries of the first fundamental form vanish, we call z an or-
thogonal parametrization.

Curves that intersect in a right angle in U also intersect in a right angle on the
surface.

This in particular applies to the parameter lines.

Let I = (a,b) be an interval and 1,4, : I — U be two curves in the parameter
domain intersecting at up = 71(to) = 72(to)-
We can now measure the angles between ~; and 4, at ug:
{1 (to), 92 (to))
(41 (to) [ 142 (to)
For the angles between ¢; = z 0, and ¢, =z 0o at p = z(q) we observe:

7 t t t
cos(Z(c1,¢2)) (e1(to), calto)) _ (Flto), Ba(to) g(us)
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Example: Cylinder

/4 #(u,v) = (cosu, sinu, v)T
\ U=(0,2r) xR
\
—sinu 0
Dz=1| cosu 0
0 1

(o)

If the first fundamental form is the identity matrix, we call = an isometric
parametrization.

Angles between curves and length of curves in the parameter domain U are
preserved under x.
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If z is an isometric parametrization, i.e. g = (0 1

L) = /, lé(o) de = /, SO A ot = /1 VOO ADN = ()

0) )
we see:

This means: isometric parametrizations preserve length.

Itis easy to see that isometric parametrizations also preserve angles and areas
(det(g) = 1).

Let (S, ds) be a metric space. We define the open ball of radius  around z € S
as

By(x) = {y € Slds(x,y) <r}

A subset A C X is called open if for any = € A there exists a ¢ < 0 such that
Be(z) C A

In particular S itself is open.
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The shapes we consider are at the same time open and compact.
Some consequences:
(6]
& 1
c1
c2
c3
VS
a ° Y
no boundary complete
ds(z,y) = mincL(c)
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Geodesic distance

The geodesic distance dg(z,y) measures the length of the shortest path on the
surface S connectingz € Sandy € S.

ds(a,y) = nf{L()|e: (a,b) = S, cla) = 2, ¢(b) =y}

dg: S x 8 — R is ametric.

The shapes we consider will be compact manifolds.
A metric space (S5, ds) is called compact if every open covering

JUa =8 UaC Sopen
(e
has a finite subcovering:

N
U Un;=5

i=1

More intuitiv:
o closed: every Cauchy sequence (z,,) C S has alimitz € S
o bounded: diam(S) = sup, ¢ g ds(z,y) is finite
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Consider a surface S with parametrization (z, U).

Afunction f : § — R is called differentiable if f = f oz : U — R s differentiable.

We want to define the gradient of f at point p € S.

Goal: Expression in local coordinates.
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The gradient of a differentiable function f : U — R is the vectorfield

o
Vi) = (dﬂgﬁ)

Ous

Geometric meaning

Geometric meaning of the gradient:
« the vector that points in the direction of steepest increase of f
o its length measures the strength of increase

o relationship with the differential of f:

Fo+hv) — f(p)

af(u)(7) = lim -

U2

P

d ; -
— F o+ h)lnmo

= (V/(u),)

directional derivative of f at wu,
along direction v
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Riesz Representation nun Differential of f nun

Uniqueness and
c1(0) =co(0)=p
é1(0) = ép(0) = v
By defining the preimages ;(t) = 2! o ¢;(t) and as usual f = f oz we get
) =i LI 6O T _ gy
= (V/(0).4(0))= (V/(0), (Dz) ¢:(0)) =\(Vf{u), (D) ~}v)
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Let 8 be the coefficients of v € T,S. Then
$o)el = (V1.8 = (Vf0)= (o By
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