

Frank R. Schmidt Matthias Vestner

Summer Semester 2016

Recap integration

Last week we have seen how to integrate scalar functions $f:S \to \mathbb{R}$ defined on a surface:

$$\int_{S} f(p) dp = \int_{U} f(x(u)) \cdot \sqrt{\det(\left(Dx\right)^{T}\left(Dx\right)} du = \int_{U} f(x(u)) \cdot \sqrt{\det g} du$$

The matrix $g = Dx^TDx$ is called **first fundamental form** of x.

IN2238 - Analysis of Three-Dimensional Shapes

8. First fundamental form, gradient- 2/22

Thir

First fundamental form

Each coordinate map $x:U\to\mathbb{R}$ comes with its own first fundamental form $q=Dx^TDx$.

Notice that g is in general not constant (as is Dx) but is a (smooth) function $g:U\to\mathbb{R}^{2\times 2}.$

$$g(u) = \begin{pmatrix} g_{11}(u) & g_{12}(u) \\ g_{21}(u) & g_{22}(u) \end{pmatrix} = \begin{pmatrix} \langle \partial_1 x(u), \partial_1 x(u) \rangle & \langle \partial_1 x(u), \partial_2 x(u) \rangle \\ \langle \partial_1 x(u), \partial_2 x(u) \rangle & \langle \partial_2 x(u), \partial_2 x(u) \rangle \end{pmatrix}$$

Since Dx has full rank the first fundamental form is a symmetric positive definit. Sometimes g is also called **Riemannian metric**.

Notation:

$$g^{-1} = \begin{pmatrix} g^{11} & g^{12} \\ g^{21} & g^{22} \end{pmatrix} = \frac{1}{\det g} \begin{pmatrix} g_{22} & -g_{12} \\ -g_{21} & g_{11} \end{pmatrix}$$

N2238 – Analysis of Three-Dimensional Shapes

8. First fundamental form, gradient - 3/22

Measuring length and angles

The first fundamental form g defines an inner product such that we can express length and angles of tangent vectors in local coordinates.

Let $w_1=\alpha_1\partial_1x(u)+\alpha_2\partial_2x(u)$ and $w_2=\beta_1\partial_1x(u)+\beta_2\partial_2x(u)$ be two tangent vectors at $x(u)=p\in S$.

$$\|w_1\|^2 = \langle Dx \cdot \alpha, Dx \cdot \alpha \rangle_{\mathbb{R}^3} = \alpha^T g(u)\alpha = \langle \alpha, \alpha \rangle_{g(u)}$$

$$\langle w_1, w_2 \rangle = \langle \alpha, \beta \rangle_{g(u)}$$

$$u_2$$

$$e_2$$

$$(\alpha_1, \alpha_2)$$

$$u_3$$

$$u_4$$

$$e_4$$

$$(\alpha_1, \alpha_2)$$

$$u_4$$

$$u_4$$

$$u_4$$

$$u_4$$

$$u_4$$

$$u_5$$

$$u_4$$

$$u_4$$

$$u_5$$

$$u_4$$

$$u_5$$

$$u_4$$

$$u_5$$

$$u_7$$

$$u_8$$

$$u_9$$

$$u_1$$

$$u_1$$

$$u_1$$

$$u_1$$

$$u_1$$

$$u_2$$

$$u_3$$

$$u_4$$

$$u_4$$

$$u_5$$

$$u_7$$

$$u_8$$

$$u_9$$

$$u_{1}$$

$$u_{1}$$

$$u_{1}$$

$$u_{2}$$

$$u_{3}$$

$$u_{1}$$

$$u_{1}$$

$$u_{2}$$

$$u_{3}$$

$$u_{1}$$

$$u_{1}$$

$$u_{2}$$

$$u_{3}$$

$$u_{1}$$

$$u_{2}$$

$$u_{3}$$

$$u_{4}$$

$$u_{1}$$

$$u_{1}$$

$$u_{2}$$

$$u_{3}$$

$$u_{4}$$

$$u_{1}$$

$$u_{1}$$

$$u_{2}$$

$$u_{3}$$

$$u_{1}$$

$$u_{1}$$

$$u_{2}$$

$$u_{3}$$

$$u_{4}$$

$$u_{1}$$

$$u_{1}$$

$$u_{2}$$

$$u_{3}$$

$$u_{4}$$

$$u_{1}$$

$$u_{1}$$

$$u_{2}$$

$$u_{3}$$

$$u_{4}$$

$$u_{5}$$

$$u_{1}$$

$$u_{5}$$

IN2238 - Analysis of Three-Dimensional Shape

8. First fundamental form, gradient- 4/2

thic

Length of a curve

The first fundamental form gives us the posiibility to measure the length of a curve defined on the manifold ${\cal S}.$

Let I be an interval and $\gamma:I\to U$ be a curve in the parameter domain with $\|\dot{\gamma}\|\neq 0$. Then $c=x\circ\gamma:I\to S$ defines a curve on the manifold, with $\|\dot{c}\|\neq 0$ (Why?).

The length of c is given by

N2229 — Analysis of Three Dimensional Shanes

8. First fundamental form, gradient - 5/22

Ar

Angle between curves

Let I=(a,b) be an interval and $\gamma_1,\gamma_2:I\to U$ be two curves in the parameter domain intersecting at $u_0=\gamma_1(t_0)=\gamma_2(t_0)$.

We can now measure the angles between γ_1 and γ_2 at u_0 :

$$\cos(\angle(\gamma_1, \gamma_2)) = \frac{\langle \dot{\gamma}_1(t_0), \dot{\gamma}_2(t_0) \rangle}{\|\dot{\gamma}_1(t_0)\| \|\dot{\gamma}_2(t_0)\|}$$

For the angles between $c_1=x\circ\gamma_1$ and $c_2=x\circ\gamma_2$ at p=x(q) we observe:

IN2238 – Analysis of Three-Dimensional Shapes

R First fundamental form gradient - 6/22

THE -

Example: Sphere

 $x(u) = (\cos u_1 \cos u_2, \sin u_1 \cos u_2, \sin u_2)^T$

$$U = (0, 2\pi) \times \left(-\frac{\kappa}{2}, \frac{\kappa}{2}\right)$$

$$Dx = \begin{cases} -\sin u_1 \cos u_2 & -\cos u_1 \sin u_2 \\ \cos u_1 \cos u_2 & -\sin u_1 \sin u_3 \end{cases}$$

$$g = \begin{pmatrix} \cos^2 u_2 & 0 \\ 0 & 1 \end{pmatrix}$$

If the off-diagonal entries of the first fundamental form vanish, we call \boldsymbol{x} an orthogonal parametrization.

Curves that intersect in a right angle in ${\cal U}$ also intersect in a right angle on the surface

This in particular applies to the parameter lines.

life.

Example: Cylinder

If the first fundamental form is the identity matrix, we call \boldsymbol{x} an isometric parametrization.

Angles between curves and length of curves in the parameter domain ${\cal U}$ are preserved under ${\boldsymbol x}.$

Isometric parametrization

If x is an isometric parametrization, i.e. $g=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ we see:

$$L(c) = \int_I \|\dot{c}(t)\| \, dt = \int_I \sqrt{\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_{g(\gamma(t))}} dt = \int_I \sqrt{\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle} dt = L(\gamma)$$

This means: isometric parametrizations preserve length.

It is easy to see that isometric parametrizations also preserve angles and areas $(\det(g) = 1)$.

Homework

There are angle-preserving parametrizations that do not preserve areas.

There are area-preserving maps that do not preserve angles.

IN2238 – Analysis of Three-Dimensional Shapes

8. First fundamental form, gradient - 9/22

Geodesic distance

$$d_S(x,y) = \inf\{L(c)|c:(a,b) \to S, c(a) = x, c(b) = y\}$$

 $d_S: S \times S \to \mathbb{R}^+$ is a metric.

IN2238 – Analysis of Three-Dimensional Shapes

3. First fundamental form, gradient - 10/22

this

Open sets

$$B_r(x) := \{y \in S | d_S(x,y) < r\}$$

A subset $A\subset X$ is called open if for any $x\in A$ there exists a $\epsilon<0$ such that $B_\epsilon(x)\subset A.$

In particular S itself is open.

N2238 – Analysis of Three-Dimensional Shapes

8. First fundamental form, gradient - 11/2

Compactness

The shapes we consider will be compact manifolds.

A metric space (S, d_S) is called compact if every open covering

$$\bigcup_{\alpha} U_{\alpha} = S \quad U_{\alpha} \subset S \text{ open}$$

has a finite subcovering:

$$\bigcup_{i=1}^{N} U_{\alpha_i} = S$$

More intuitiv:

- closed: every Cauchy sequence $(x_n) \subset S$ has a limit $x \in S$
- bounded: $\operatorname{diam}(S) = \sup_{x,y \in S} d_S(x,y)$ is finite

IN2238 – Analysis of Three-Dimensional Shapes

8. First fundamental form, gradient - 12/2

THE P

Consequences

The shapes we consider are at the same time open and compact.

Some consequences:

x y

complete

 $d_S(x,y) = \min_{\boldsymbol{c}} L(c)$

N2238 – Analysis of Three-Dimensional Shapes

8. First fundamental form, gradient - 13/2

Gradient of a function

Consider a surface S with parametrization (x, U).

A function $f:S\to\mathbb{R}$ is called differentiable if $\tilde{f}=f\circ x:U\to\mathbb{R}$ is differentiable.

We want to define the **gradient** of f at point $p \in S$.

Goal: Expression in local coordinates.

Geometric meaning

• the vector that points in the **direction of steepest increase** of \tilde{f}

IN2238 – Analysis of Three-Dimensional Shape

Geometric meaning of the gradient:

8. First fundamental form, gradient - 14/2

Gradient in euclidean space

The gradient of a differentiable function $\tilde{f}: U \to \mathbb{R}$ is the vectorfield

$\nabla \tilde{f}(u) = \begin{pmatrix} \frac{\partial \tilde{f}}{\partial u_1}(u) \\ \frac{\partial f}{\partial u_2}(u) \end{pmatrix}$

$U \subset \mathbb{R}^2$ $U \subset \mathbb{R}^2$ $U \subset \mathbb{R}^2$ $U \subset \mathbb{R}^2$

its length measures the strength of increase
relationship with the differential of f̃:

$$\begin{split} d\tilde{f}(u)(\vec{v}) &= \lim_{h \to 0} \frac{\tilde{f}(p + h\vec{v}) - \tilde{f}(p)}{h} \\ &= \frac{d}{dh} \tilde{f}(p + h\vec{v})|_{h=0} \\ &= \langle \nabla \tilde{f}(u), \vec{v} \rangle \end{split}$$

directional derivative of \tilde{f} at $\boldsymbol{u},$ along direction \boldsymbol{v}

form, gradient - 15/22 IN2238 – Analysis of Three-Dimensional S

Riesz Representation

White

Let X be a vectorspace. Then we denote by

$$X^* = \{\phi : X \to \mathbb{R} | \phi \text{ linear} \}$$

the dual space of X.

Riesz Representation theorem

Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space (complete, inner product). Then for each *continuous* $\phi \in H^*$ there exists a unique $y \in H$ such that

$$\phi(x) = \langle y, x \rangle \quad \forall x \in H$$

Differential of f

The differential of a function $f:S\to\mathbb{R}$ at a point $p\in S$ is the linear mapping $df(p):T_pM\to\mathbb{R}$ satisfying

$$df(p)[v] = \lim_{t \to 0} \frac{f(c(t)) - f(p)}{t}$$

 $df(p)[v]=\lim_{t\to 0}\frac{f(c(t))-f(p)}{t}$ for all curves $c:(-\varepsilon,\varepsilon)\to S$ with c(0)=p and $\dot{c}(0)=v$.

Uniqueness and Linearity

$$c_1(0) = c_2(0) = p$$

$$\dot{c}_1(0) = \dot{c}_2(0) = v$$

By defining the preimages $\gamma_i(t) = x^{-1} \circ c_i(t)$ and as usual $\tilde{f} = f \circ x$ we get

$$df(p)[v] = \lim_{t \to 0} \frac{f(c_i(t)) - f(p)}{t} = \lim_{t \to 0} \frac{\tilde{f}(\gamma_i(t)) - \tilde{f}(u)}{t} = \frac{d}{dt} \tilde{f}(\gamma_i(t))|_{t=0}$$

$$= \langle \nabla \tilde{f}(0), \dot{\gamma}_i(0) \rangle = \langle \nabla \tilde{f}(0), (Dx)^{-1} \dot{c}_i(0) \rangle = \overline{\langle \nabla \tilde{f}(u), (Dx)^{-1} v \rangle}$$

Gradient

Definition

THIE

Let $f:S \to \mathbb{R}$ be a differentiable function. The gradient $\nabla f(p)$ at $p \in S$ is the unique element of T_pS such that

$$\langle \nabla f(p), v \rangle = df(p)[v]$$

(Possible due to Riesz representation theorem)

The gradient in local coordinates

Given $\nabla \tilde{f}$ and g, the coefficients α of $\nabla f = Dx \cdot \alpha \in T_pS$ are given by $\alpha = g^{-1} \nabla \tilde{f}(x^{-1}(p))$

Let β be the coefficients of $v \in T_pS$. Then

$$df(p)[v] = \langle \nabla \tilde{f}(u), \beta \rangle = \langle \nabla f, v \rangle = \langle \alpha, \beta \rangle_{g(u)}$$

IN2238 – Analysis of Three-Dimensional Shapes

8. First fundamental form, gradient - 19/22