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We have not shown that this is indeed the shortest path connecting n and p.
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Recall that we model functions on triangular meshes to act linearly within each
traingle 7;.

The gradients are thus constant inside each triangle and given (in local coordi-
nates) by
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9. Gradient and Divergence - 5
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Example

Consider the function f : S*\ {n} — R that assigns each point p on the unit

sphere its distance to the northpole n: "

f(p) = ds2(n, p)
Without proof:

The distance is realized by the path sketched
on the right.
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Gradients distance
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Weak derivatives

Strictly speaking piecewise linear functions are not differentiable (in the classical
sense).

However it is possible to define weak derivatives that generalize classical
derivatives.

Main information:

If a function is continuous and piecewise (classically) differentiable
(up to sets of measure 0), classical and weak derivatives coinside.
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Test function

Example

Consider the function
_Jexp(—=p) el <1

9@=1 la > 1 :

Clearly supp ¢ = [-1,1] is compact. R

Since [-1,1] is not contained in the open interval (—1,1), ¢ ¢ C°((-1,1)) but

¢ e CX(R)and ¢ € C((a,b))V[-1,1] C (a,b).
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Properties I Weak derivative 1D

If the open set S C R™ has a boundary and f € C2°(S), then there isan e > 0
such that f vanishes for all points that are closer then ¢ to the boundary 95:
dist(supp f,05) =e >0
In the previous example 95 = {a,b} and ¢ = -
min{—(a—1),b-1} B

The weak derivative is unique (up to null sets).

If f € C* weak and classical derivative coincide:

b b b
As a consequence f and all its derivatives vanish at the boundary of S. / F@)d (x)de = f(x)o(x)f, - / f(@)p(z)de =~ / f(w)o(x)de

IN2238 — Analysis of Three-Dimensional Shapes 9. Gradient and Divergence - 9 lllIN2238 — Analysis of Three-Dimensional Shapes 9. Gradient and Divergence - 10

come L

Consider the continuous, piecewise differentiable function f : (

fla) =1al
Let ¢ € C°(-1,1) be a test function. Then

/f z)de = /m dz+/z<p()

0 1 2
= (—w(x)l‘il . / ¢>(z)dz> + (m(zng - / ¢(x)dz) Let f.g € L(S). Then
1 B ! fg L*(S fs
- /_1 o(w)ola)dz defines an inner product.
-1 0
ole)= {1 i i 0
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The space PL(S) = span{t;|i = 1...n} of piecewise linear functions on a
triangular mesh S = ({v;}i,, {T;}7L, ) is a subset of H'(S).

Let f =Y fi; and g =" g;v;. Then their H* inner product is given by
(f.9ms) = (F.9)205) + [5(V/, Vg)dp =f"Mg+£"Cg

The entries of C € R™*" are given by:

Cij = [¢{Vei, Vipy)dp .

In the Homework you show that
In general a Sobolev space is denoted by W*(S) and consists of 4
functions that are % times weakly differentiable wnh all derivatives ¢, = {—%(cot oij + fi;) i v; and v; share an edge

having finite L norm.

For the cases p = 2 one writes W*? = H* to denote that these are
Hilbert spaces.

o else
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Divergence euclidean ﬂ_\L

Leta : U — R? be a smooth vectorfield on U = (ay,b;) x (ag,b) C R? and
fe C°°( ) a test function.

b pba 5
/ / 011 +(12( )02f(u)du2du1

by by by pbe
/ / a1 81f duldu2+/ / ag 32f dquul

:—/ 31(11( )f( )duldug—/ (92a2( )f( Jduy dug

—/ F(u) diva(u)du = —(f,diva)
U

The same holds for an arbitrary open subset U ¢ R? and higher dimensions.

by pby by
/ / ()01 f (w)duyduy = / ol - / By () f(w)duy | duy
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Divergence on manifolds U |
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