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Test function Properties

If the open set S C R™ is bounded and f € C2°(S), then there is an ¢ > 0 such
that f vanishes for all points that are closer then ¢ to the boundary 05:

dist(supp f,05) =¢ >0
As a consequence f and all its derivatives vanish at the boundary of S.

Example
Consider the function

_ exp(—ﬁ) lz] <1

o) =1, > 1 -

Clearly supp ¢ = [-1,1] is compact. R o

Since [-1,1] is not contained in the open interval (-1,1), ¢ ¢ C°((-1,1)) but
¢ € CX(R)and ¢ € C((a,b))V[-1,1] C (a,b).

IN2238 — Analysis of Three-Dimensional Shapes 10. Divergence and Euler Lagrange - 3

Weak derivative 1D

Consider the continuous, piecewise differentiable function f : (-1,1) - R

f(@) =]
Let ¢ € C°(—1,1) be a test function. Then

1 0 1
/_lf(z)q) (z)dz = —/_lw (a:)daH—/0 2¢/(z)dx

= (—x¢(.r)|(11 +/_01 ¢(£)dx> + <x¢(x)|(1) - /Olti)(ac)dr)

The weak derivative is unique (up to null sets).
If f € C* weak and classical derivative coincide:

Tl oz>0

’ / . b ’ ! I K !
[ t@elia= r@otall - [ flarselin = [ rorotoe o {—1 2 <0
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Divergence euclidean Integration by parts

The product rule yields

/ (06 ()g(u)du + / (0)(B1gl))du = / B,(f (u)gla)du
U U U
= [ fo)als)envls)ds

au
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Examples | Adjoint operators U |

Example 1
. v=-1 v=1
Let U = (a,b) C R with boundary {a, b} R R
a

Example 2
LetU = (al,b1) X (ag,bz) cR2.

Jy O f(w)du = [y, f(s)(ei,v(s))ds

The mapping z — (Az,y)y € Ris linear and continuous.
) o . , Riesz: There exists a unique z =: By € X such that (Az,y)y = (z,2)x
= [0 f(by,t)- Lt + ) f(tb2) - 0dt+ [ fla,t) - (-1) di [ f(t,00) - Odt Linearity

- f:; flant) + f(but)dt (Az,y1 +ayo)y = (Az,y)y +a(Az,po)y = (2, 21)x +olz, 20)x = (¥, 21 +az)x
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Adjoint of gradient H | H

_ ] _ _ _ Leta : U — R be a smooth vectorfield on U ¢ R? and f € C°(U) a test
The matrix A € R™*" describes a continuous linear mapping A : R" — R™: function.

Adjoint of a matrix J1U]]

A= Ar (Vi) = | o)+ ol

Adjoint =- /U Bray (u) f(u)du + /a UMV}(LS - /b Bhos(u) flu)du

(A(2)v)em = (A2, = (5, ATg)eo = o, 4° (o - o
= —/Uf(u)dlva(u)duz (f,—diva)

Notice the difference between A and A. In practice A and A are often identified.
The action of linear operators is often abbriviated: We say that — div is formally adjoint to V.

Alz)= Az The gradient is a linear operator but not continuous.
In general one has to carefully choose domain and codomain of operators.
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" Divergence'in local coordinatesﬂJ H

We have seen that it is beneficial to rewrite all kinds of quantities on a surface S
as quantities in the better understood parameter domain.

o length of curves

o integrals of functions

o gradient of a function

Our goal is to derive a function A : U — R that depends on the vectorfield
o U — R? and satisfies
divV(p) = h(z™"(p))

(V1 V)dp =~ [5 f(p)divV (p)dp = — [, flu)h(u)y/det g{u)du

After some work it will turn out that

hlu) = s Yoy (et gl )
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Partition of unity H I

The main difficulty arise from the fact that every parameterspace U; C R? comes
with boundary.
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Partition of unity on the
“sphere
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Let V(p) = Dz(u)a(u) be a smooth vectorfield on S (z(u) =
of unity as on the previous slides.
We define V;(p) = V(p)o;(p) = Dxaf ( ) and derive

Js(VEV)dp = zzﬂfb (0 f(w))od () /det g(u)du
=% Ty, )\/det g(u))du
==L ), J0)(V(edVaetgoa), dia) =dp
= Jo ) (- SL (Ve ox),010) s ) o
= [, f(u ( (B0 Tg) s ) VAT g d
= Jy f(u)h(u)ydetgdu
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p) and ¢; a partition
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Motivation

Often one is interested in the minimizers of Functionals.
[r= argmin ¢ p E(f)
Let us recap how we found minimizers of a function F': R" — R
As a first step one is looking for a point 2* such that
VF(z*)=0
In other words: The directional derivatives

F(z*+ev)-F(z"

F(2*)[v] = lim.yo . @)~

vanish for all directions v € R*
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A minimizer u* of
)= J! flu

F={ueC([a,b]),u(a) =

Lloaf(, ()] = S, ("))

This is the Euler Lagrange equation of E(u).

2))dr,ue F,f € CHRxR)

a, u(b) = ﬂ}

must satisfy

Remark
o A minimizer must not exist
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Mollifier

0)and [, ¥(x

Let v € C*(R™) with supp v C By(0
Then ¢ (x) = Sv(%) satisfies

z)de = 1.

o 9. € CX(R"), supp . C Be(0)

¢ foute(z)de =1
Foru € LP(R™) (1 < p < oc) the functions u. = u x ¢, satisfy
o u. € C*(R"Y)

o u. —uin L(R")

o Ifsuppu C V, then suppu. C V. = {z € R"|d(z,V) < e}

The functions . are called mollifiers.

10. Divergence and Euler Lagrange- 18

IN2238 - Analysis of Three-Dimensional Shapes

Functionals H H

Example:

Let (z,U) be a parametrization of a surface S. We consider the space of differ-
entiable curves on S that connect p = z(u) and ¢ = z(v).

f—{vecl((ab) U)' 1) =u, “/(b)— v}

Then the mapping E(y f VG 2z is @ functional

onF.

IN2238 — Analysis of Three-Dimensional Shapes 10. Divergence and Euler Lagrange - 20

Test directions

We will use a similar approach when minimizing functionals but have to be care-
ful with the allowed directions v.

Consider the following problem

min{E(u) : u € F}, with F = {u € C*([a,b]), u(a) = a, u(b) = 6}

We will only test directions v € C%°((a,b]). That way we are sure that we only
compare energies of members of F:

ueF=uteveF YoeC((a,h)
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Proof

First we define @(¢) = E(u* +ev) and observe
a(¢)-8(0)

lim, g = lim,

E(u" +ev)-E(u)
U E: U @[(0)

and
(I)/(O) = fa &

= f: Oy f(u,u'Yolz) + O f (u,u')o' (2)de
with partial integration and v € C%°([a, ])
= f:(ﬁl flu) - %62 flu,))o(z)de= DE(u)jv]= g—f(u)[v]

c=of(ut v, +ev')de
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Fund. Lemma of Calc. Var U L

Fundamental Lemma of the calculus of variations

Let U C R™ be open and u € C**(U) be such that
Jyulzp(z) =0 YoeC2(U)

thenu = 0.

Proof

Assume u(y) # 0 for some y € U. For instance u(y) > 0.

Then w is strictly positive in a neighborhood B, (i) (due to continuity).
There is a positive function v € C2°(B,(y)) C C2°(U) with v(y) = 1.
(Forinstance v =15 o) *Ur 1) :

> [y ulz)v(z) >0

Generalizations 2
A minimizer u* € C*([a, b, R") of
E(u) = f‘ff(ul(x),un(z)u'l(z) ot (2))dz, ue F f € C*(Rx... xR)
n

F = {ue C"(a,b],R™),u(a) = o, u(b) = B}

must satisfy

L Osgnf ', (@))] = 0:f (", (7)) Vi=1,...m
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nim

Generalization

Let U ¢ R™. A minimizer u* of

E(u) = [, f(u(x), Vu(x))dz, u e F, f € CAR X R")

F={ue (U R)ulow = g}
must satisfy

div[Vyof (u*, Vu)) = 0y f(u, Vu*)

Example (Dirichlet energy)
Blu) = Ji, [Vulfde  f(u.€) = J]?
Of(w,€)=0, Vof(u,§)=2 =div2Vu*)=0
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