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Test function U L H

Example
Consider the function
exp(—l_lwz) | <1

o= o) )

Clearly supp ¢ = [-1,1] is compact. e
Since |1, 1] is not contained in the open interval (-1,1), ¢ ¢ C°((—1,1)) but
¢ € C(R)and ¢ € C((a,0))¥]-1,1] C (a,0).
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If the open set S C R™ is bounded and f € C2°(S), then there is an e > 0 such
that f vanishes for all points that are closer then ¢ to the boundary 0S:

dist(supp f,0S) =€ >0

As a consequence f and all its derivatives vanish at the boundary of S.
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Weak derivative 1D M HJ

The weak derivative is unique (up to null sets).

If f € C* weak and classical derivative coincide:

b b b
[ ()6 (@)de = f(2)o(a)]) - / Fa)p(a)de = - / (2)o(a)de
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Example H H

Consider the continuous, piecewise differentiable function f : (-1,1) = R

flx) = ||
Let ¢ € C2°(—1,1) be a test function. Then

/_ 11 f(2)d/(x)de = ~ /_ 01 2¢/(z)dz + /O | 16 (x)dz

_ (_W)w_l +f qs(w)dw) ! (mmé -| | ¢<w>dw)
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Divergence euclidean M UJ
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Integration by parts M LU

-%)

The product rule yields

/U (3 (w)g(u)du + / F(u) Bsgla))du = / 0,7 (wglu))du
[ g

(s)g(s)(ei, v(s))ds
oU
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Example 1

= —] =1
Let U = (a,5) C R with boundary {a, b} e W
¢ b

f; ['(@)dz = f; O f(x)dx = f{a’b} f(s)(1,v(s

Example 2
Let U = (al,bl) X (ag,bg) C R2.

Jo O f(uw)du = [ f(s)(ei, v(s))ds

— f;j f(blat) c1dt +fb(i t b2 Odt—|—f al, (_1) dt_|_ffll f(t,ag)-()dt
= % flar,t) + f(br,t) de
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Adjoint operators N

The mapping = — (Az,y)y € Ris linear and continuous.

Riesz: There exists a unique z =: By € X such that (Az,y)y = (z,2)x
Linearity

(Az, y1+aya)y = (Az,y1)y +alAz, o)y = (z,21)x +o(z, 22) x = (2,21 +29) x
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Adjoint of a matrix H | \

The matrix A € R™*" describes a continuous linear mapping A : R™ — R™:
Alz) = Az
Adjoint

(A(x),y)rn = (Az, o = (2, ATy)en = {2, A"(y))r

Notice the difference between A and A. In practice A and A are often identified.
The action of linear operators is often abbriviated:

Alz) = Az
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Adjoint of gradient H H

Let o : U — R? be a smooth vectorfield on U ¢ R? and f € C(U) a test
function.

(V,0) = / ()01 () + asfu)f(u)d

/81a1 du+/ o e1,V ds—/agozg
=— /U f(u) diva(u)du = (f,—div )

We say that — div is formally adjointto V.

The gradient is a linear operator but not continuous.

In general one has to carefully choose domain and codomain of operators.
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Divergence on manifolds M HJ
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Divergence in local coordinatesm

We have seen that it is beneficial to rewrite all kinds of quantities on a surface S
as quantities in the better understood parameter domain.

e length of curves
o integrals of functions
o gradient of a function

Our goal is to derive a function h : U — R that depends on the vectorfield
a: U — R? and satisfies

divV(p) = h(z™'(p))

[V, V)dp =~ [, f(p) divV(p)dp = — [, f(u)h(u)+/det g(u)du

After some work it will turn out that

h{u) = s Yo Oh( /et gl ()

10. Divergence and Euler Lagrange - 14



""" Main difficulty: Boundaries HH

The main difficulty arise from the fact that every parameterspace U; C R? comes

with boundary.

e
T -
G4 ST
B |
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Partition of unity MU
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Partition of unity on the
“sphere
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Mollifier H ”

Let ¢ € C°(R™) with supp) C By(0) and [, ¥(z)dz = 1.
Then ¢ (z) = 29 (%) satisfies

o . € C°(R"), supp v C B.(0)

o [0, Ve(2)de =

Foru € LP(R™) (1 < p < oc) the functions u. = u 1), satisfy
o u. € C*(R")

o u. —uin LP(R")

o lfsuppu CV,thensuppu. C V. ={z e R"d(z,V) < ¢}

The functions . are called mollifiers.
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~ Divergence in local coordinates H H

Let V(p) = Dz(u)a(u) be a smooth vectorfield on S (z(u)
of unity as on the previous slides.

We define Vi(p) = V(p)o;(p) = ij( )and derive
J(VfV)dp = Z ZE 1fU (0:.f (u))a (u)\/det g(u)du

==, Xict Jy, f(u)0i(o ) y/det g{u))du
== Zi:l wa f(P)(V(O‘g detgoa~"),0iz)

=p) and ¢; a partition

1dp

Vdet g

= [ S0) (- S V(e /Betgoa), dia) =) dp
—fU ( i= 180’@\/@) det )\/Hdu

= fU (u)y/det g du
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Functionals U L H

Example:

Let (z,U) be a parametrization of a surface S. We consider the space of differ-
entiable curves on S that connect p = z(u) and ¢ = z(v).

f—{’yeCl((&b) U)' ()=u,7()=v}

Then the mapping E(y f V0l »))dz is a functional
on F.
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Motivation

Often one is interested in the minimizers of Functionals.
fr= afgmiﬂfeF E(f)
Let us recap how we found minimizers of a function F : R* — R
As a first step one is looking for a point z* such that
VE(z*)=0
In other words: The directional derivatives

DF(x*)v] = lim, o 2 t=0=Flz) —

€

vanish for all directions v € R"
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Test directions H H

We will use a similar approach when minimizing functionals but have to be care-
ful with the allowed directions .

Consider the following problem
min{ E(u) : u € F}, with F = {u € C*([a,b]), u(a) = o, u(b) = f}

We will only test directions v € C°((a,b]). That way we are sure that we only
compare energies of members of F:

weF=>uteveF YoeCP((ab))
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Euler Lagrange H H

A minimizer v* of

ff z))dz,u € F,f € CXR xR)
F - {ue C*(o).ate) o) )

z o , ()] = 0 S (w))

This is the Euler Lagrange equation of E(u).

must satisfy

Remark c1

o A minimizer must not exist N <
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Proof m

First we define @(c) = E(u* + ¢v) and observe

hms—)[) E(u*-I-E;J)—E(u) = hme—>0 (1)(6):1)(0) = (I),(O)

and
¢'(0) = fa L1 _of(utev, +ev')dn

—falfuu z) + O f (u,u' o' (2)d

with partial integration and v € C2°([a, b))
= [o(0uf(u,0') = £0f(u,u!))o(z)dr= DE(u)lt]= 2(w)]]
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Fund. Lemma of Calc. Var m

Fundamental Lemma of the calculus of variations
Let 7 C R™ be open and u € COO( ) U) be such that

Jyu@)(z) =0 YveCX(U)

then v = (.

Proof

Assume u(y) # 0 for some y € U. For instance u(y) > 0.
Then w is strictly positive in a neighborhood B,(y) (due to continuity).
There is a positive function v € C2°(B,(y)) C C*(U) with v(y) =

(Forinstance v=1p,_,(y) * ¥/4)
= [ ulz)o(z) >0
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Generalization

Let U C R™. A minimizer u* of

)= [ flu 2))dz, u € F,f € CHRxRY
F = {u 5 COO(U, R)7U|8U =g}
must satisfy
div[Vaf(u*, Vu*)] = 0y f (u*, V')
Example (Dirichlet energy)

= [ [Vulde flu,€) =€
O fu,é) =0, Vof(u,6)=2 = div(2Vu*) =0
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Generalizations 2 H H

A minimizer v* € C?([a,b],R") of

B(w) = [ flure),..., un(@), 0 (z), ... o, (2))de, w € F,f € CHRX ... X R)

F={ueCY[ab,R"),ula) = a, u(b) = §)

must satisfy

LD fur, (w))]) = Of (u*, (w)) Vi=1,...;n
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