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Given a coordinate map x : U Ñ M of the n-dimensional manifold M Ă Rn`1, the
canonical Riemannian metric is given as

g : U Ñ Rnˆn gijpuq “ xBixpuq, Bjxpuqy

While the first derivatives Bixpuq lie in the n-dimensional vector space TxpuqM , the
second derivatives might contain a normal component, i.e.,

Bijxpuq “
nÿ

k“1

Γk
ijpuqBkxpuq ` αijpuqNpuq

The n3 scalar functions Γk
ij : U Ñ R are called Christoffel symbols.

They are symmetric in i and j, i.e., Γk
ij “ Γk

ji. (Why?)

Christoffel Symbols and Metric
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Using Bigjℓpuq “ xBijxpuq, Bℓxpuqy ` xBiℓxpuq, Bjxpuqy, we obtain

Γ̃ℓijpuq :“1

2
rBigjℓpuq ` Bjgℓipuq ´ Bℓgijpuqs

“1

2
rxBijxpuq, Bℓxpuqy ` xBiℓxpuq, Bjxpuqy ` xBjℓxpuq, Bixpuqy`
xBjixpuq, Bℓxpuqy ´ xBℓixpuq, Bjxpuqy ´ xBℓjxpuq, Bixpuqys

“ xBijxpuq, Bℓxpuqy “
nÿ

k“1

Γk
ijpuqgkℓpuq

If we use the notation gijpuq :“ pgpuq´1qij , we obtain

nÿ

ℓ“1

gkℓpuqΓ̃ℓijpuq “
nÿ

k1“1

nÿ

ℓ“1

gkℓpuqgℓk1puqΓk1
ij puq “ Γk

ijpuq

Christoffel Symbols are Intrinsic
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In summary, we have

Bijx “
nÿ

k“1

Γk
ijBkx ` αijN

with the intrinsic Christoffel symbols

Γk
ij “

nÿ

ℓ“1

1

2
gklrBigjℓ ` Bjgℓi ´ Bℓgijs

The expression
řn

k“1 Γ
k
ijBkx can also be seen as an intrinsic derivative of the

vector field Bjx in the direction of Bix.
This derivative is called covariant derivative.

Example: Sphere
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Given the coordinate map

x :
ı
´π

3
,
π

3

”
ˆ

ı
´π

3
,
π

3

”
ÑS2

pα1, α2q ÞÑ
¨
˝
cospα1q cospα2q
sinpα1q cospα2q

sinpα2q

˛
‚

we obtain the Riemannian metric

gpα1, α2q “
ˆ
cospα2q2 0

0 1

˙

and the Christoffel symbols

Γ1pα1, α2q “ ´ sinp2α2q
2 cospα2q2

ˆ
0 1
1 0

˙
Γ2pα1, α2q “sinp2α2q

2

ˆ
1 0
0 0

˙

Example: Christoffel Symbols
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x

Parametrization g11 g22

Γ1
12 “ Γ1

21 Γ2
11



Example: Covariant Derivative
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x

Parametrization “B1x” “B2x”

“∇B1xB1x” “∇B1xB2x” = “∇B2xB1x” “∇B2xB2x”

Covariant Derivative
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Given a coordinate map x : U Ñ M of the n-dimensional manifold M Ă Rn`1,
and two vector fields Y and Z represented as (p “ xpuq)

Y ppq “
nÿ

i“1

yipuqBixpuq Zppq “
nÿ

j“1

zjpuqBjxpuq,

the covariant derivative ∇ZY is a vector field that can be represented as

“
∇BjxBix

‰ ppq “
nÿ

k“1

Γk
ijpuqBkxpuq

“
∇BjxY

‰ ppq “
nÿ

i“1

yipuq∇BjxBixppq ` BjyipuqBixpuq (product rule in Y )

r∇ZY s ppq “
nÿ

j“1

zjpuq ¨ ∇BjxY ppq (linearity in Z)

Extrinsic Formulation
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∇ZY can be formulated in a simpler manner if Y and Z can be extended to the
ambient space Rn`1 of M . To this end let

Ỹ , Z̃ : Rn`1 Ñ Rn`1

with Ỹ |M “ Y and Z̃|M “ Z.

Then, we have for every p P M

∇ZY ppq “ πTpM

´
DỸ ppq ¨ Z̃ppq

¯
,

where

πTpM : Rn`1 Ñ TpM

is the orthogonal projection of the ambient space Rn`1 onto TpM .

Geodesics

Covariant Derivative Geodesics Second Fundamental Form

Shortest Path in Local Coordinates
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Given a coordinate map x : U Ñ M of the n-dimensional manifold M , we like to
find the shortest path γ : r0, 1s Ñ U that connects two points u0, u1 P U .

The length of γ is induced by the Riemannian metric g : U Ñ Rnˆn via

lengthpγq “
ż 1

0
x 9γptq, gpγptqq ¨ 9γptqy 1

2 dt

It is often easier to consider the following energy function instead

Epγq “
„ż 1

0
x 9γptq, gpγptqq ¨ 9γptqydt

 1
2

Using the Cauchy-Schwarz inequality, we obtain

lengthpγq ď Epγq
with equality iff } 9γ}g ” const, i.e., γ is uniformly parametrized.

Geodesics

Covariant Derivative Geodesics Second Fundamental Form
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Let us select the two minimizers γ˚ P argmin lengthp¨q and γ̂ P argminEp¨q.
Further we assume that γ̄˚ is a uniform re-parametrization of γ˚.

Then we have

lengthpγ˚q “ lengthpγ̄˚q “ Epγ̄˚q ě Epγ̂q ě lengthpγ̂q ě lengthpγ˚q.
Therefore, we know

Every minimizer of E minimizes length rlengthpγ̂q “ lengthpγ˚qs
The minimum of E is the minimal length rlengthpγ̂q “ Epγ̂qs
The minimizer of E is uniformly parametrized rlengthpγ̂q “ Epγ̂qs

Minimizing E provides us with a uniformly parametrized shortest path between two
points. Every local minimum of E is called geodesic.

Geodesic Equation

Covariant Derivative Geodesics Second Fundamental Form
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Given two points u0, u1 P U , a geodesic γ “ pγ1, . . . , γnq : r0, 1s Ñ U that
connects these points minimizes

Epγ1, . . . , γnq :“
ż 1

0

nÿ

i,j“1

gijpγptqq ¨ 9γiptq 9γjptqdt

The Euler-Lagrange equation is

0 “ BE
Bγk “

nÿ

i,j“1

Bkgijpγptqq 9γiptq 9γjptq ´ d

dt

«
2

nÿ

i“1

gikpγptqq 9γiptq
ff

:γk “ ´
A

9γ,Γk 9γ
E

and can therefore be presented with respect to the Christoffel symbols.

Example: Geodesics

Covariant Derivative Geodesics Second Fundamental Form
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x

Parametrization “∇B1xB1x” “∇B2xB2x”

Equator Meridians



Covariant Derivative along Curves

Covariant Derivative Geodesics Second Fundamental Form

IN2238 - Analysis of Three-Dimensional Shapes 11. Geodesics and Curvature – 17 / 26

Given a curve γ : p0, Lq Ñ U and a vector field X along the curve c “ x ˝ γ, we
would like to define

∇
dt

X :“ ∇ 9cX

To this end let Y “ řn
i“1 y

iBix be a vector field on M that coincides along c with
X. Further let Z “ řn

i“1 z
iBix be a vector field that coincides along c with 9c.

Then we have (p “ xpuq “ cpτq)

∇ZY ppq “
nÿ

k“1

«
d

dt

´
yk ˝ γptq

¯ˇ̌
ˇ
t“τ

`
nÿ

i,j“1

yipuqΓk
ijpuqzjpuq

ff
Bkxpuq

If we restrict this vector field to a vector field along the curve, it only depends on
X and c, but not on the extension of Y and Z. Thus, ∇

dt is well defined.

Geodesic Equation in Terms of the
Covariant Derivative

Covariant Derivative Geodesics Second Fundamental Form
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Given a geodesic c : p0, 1q Ñ M , we have for 9c “ řn
i“1 9γiBix

∇
dt

9c “
nÿ

k“1

«
:γk `

nÿ

i,j“1

9γiΓk
ij 9γj

ff
Bkx

“
nÿ

k“1

”
:γk `

A
9γ,Γk 9γ

Eı
Bkx “ 0

The geodesic equation can therefore be written as

∇
dt

9c “ 0

Since ∇
dt 9c measures how different a curve c is from a geodesic we can use it to

define the geodesic curvature of a curve.

Geodesic curvature

Covariant Derivative Geodesics Second Fundamental Form
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Given a curve c : p0, Lq Ñ R2 parametrized by arc-length (} 9c} ” 1), the curvature
κptq at cptq can be computed via

κptq “detp 9cptq, :cptqq
} 9cptq}3 “ detp 9cptq, :cptqq

Given a curve c : p0, Lq Ñ M in the 2D manifold M that is parametrized by
arc-length, we can compute the geodesic curvature κgptq by replacing :c with ∇

dt 9c
and obtain

κgptq “ det

ˆ
9cptq, ∇

dt
9cptq

˙

The geodesic curvature is 0 for geodesics and can therefore be understood as an
intrinsic reformulation of the classical curvature of curves.

Second Fundamental Form

Covariant Derivative Geodesics Second Fundamental Form

Gauss Map
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Given a 2D manifold M Ă R3, we call a smooth mapping

N : M Ñ S2 @p P M : NppqKTpM

its Gauss map. For every 3D shape there exists such a mapping. (Why?)

If x : U Ñ M is a coordinate mapping, we can always define a local Gauss map via

N : M ÑS2

p ÞÑ B1xpuq ˆ B2xpuq
}B1xpuq ˆ B2xpuq} for u “ x´1ppq

If M “ f´1pcq is given implicitly via a function f : R3 Ñ R, the Gauss map is

given via Nppq “ ∇fppq
}∇fppq} .

Shape Operator

Covariant Derivative Geodesics Second Fundamental Form
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Given a 2D manifold M Ă R3 together with its Gauss map N : M Ñ S2, we call
its differential the shape operator or Weingarten mapping S

Sp : TpM ÑTNppqS2

v ÞÑDNppqrvs

Since TNppqS2 “ NppqK “ TpM , Sp : TpM Ñ TpM is an endomorphism.

If we choose a basis of TpM , we would obtain a 2 ˆ 2 matrix, but this matrix
would depend on the chosen basis. Nonetheless, the eigenvalues of these matrices
would remain the same.

The goal is to show that Sp can be put in diagonal form and that both eigenvalues
are real.

Self-Adjointness of the Shape Operator
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We know (Linear Algebra) that self-adjoint endomorphisms are diagonalizable with
real eigenvalues. Therefore, we have to prove that

xv1, Sppv2qy “ xSppv1q, v2y for all v1, v2 P TpM

If v1 and v2 are co-linear this is obvious. If they are not co-linear, one can find a
local coordinate map x : U Ñ M with xp0q “ p and vi “ Bixp0q.
Using xN ˝ xpuq, Bixpuqy ” 0 leads to

0 “ B1 xN ˝ xpuq, B2xpuqy|u“0 “ xSppv1q, v2y ` xNppq, B12xp0qy
0 “ B2 xN ˝ xpuq, B1xpuqy|u“0 “ xSppv2q, v1y ` xNppq, B21xp0qy

which proves the self-adjointness of the shape operator.

Principal Curvatures
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The two eigenvalues κ1ppq and κ2ppq of Sp are called principal curvatures and
corresponding eigenvectors v1ppq and v2ppq are called principal curvature
directions.

Note that κgppq along the geodesic ci corresponding to vippq is 0 and the
curvature of this curve coincides with κippq. In that sense, we can think of the
principal curvatures as natural generalizations of the planar curvature.

We can derive two other curvatures from the principal curvatures:

Hppq :“κ1ppq ` κ2ppq
2

“ 1

2
trpMq (mean curvature)

Kppq :“κ1ppq ¨ κ2ppq “ detpMq (Gauss curvature)

given a representing matrix M of Sp.



Second Fundamental Form
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Given the shape operator Sp : TpM Ñ TpM , we can define the Second
Fundamental Form

I : TpM ˆ TpM Ñ R pv1, v2q ÞÑ xSpv1, v2y
This means, we have

Bijx “
nÿ

k“1

Γk
ijBkx ´ IpBix, Bjxq ¨ N

and the second fundamental form can be computed via

IpBix, Bjxq “ ´ xBijx,Ny .

Shape Operator in Local Coordinates
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Any coordinate map x : U Ñ M provides for a base tB1xpuq, . . . , Bnxpuqu of TpM
for p “ xpuq. In this base, the shape operator Sp can be written as

SppBjxpuqq “
nÿ

i“1

Mi
jBixpuq

This means, we have

IpBjx, Bkxq “ xSppBjxq, Bkxy “
nÿ

i“1

@
Mi

jBix, Bkx
D “

nÿ

i“1

gkiMi
j

In other words the representating matrix M of Sp satisfies the Weingarten
equations

M “ g´1 ¨ I


