Analysis of 3D Shapes (IN2238)

Frank R. Schmidt
Matthias Vestner
Summer Semester 2016

Covariant Derivative

11. Geodesics and Curvature

Christoffel Symbols

Covariant Derivative Geodesics Second Fundamental Form

Given a coordinate map $x: U \rightarrow M$ of the n-dimensional manifold $M \subset \mathbb{R}^{n+1}$, the canonical Riemannian metric is given as

$$
g: U \rightarrow \mathbb{R}^{n \times n} \quad g_{i j}(u)=\left\langle\partial_{i} x(u), \partial_{j} x(u)\right\rangle
$$

While the first derivatives $\partial_{i} x(u)$ lie in the n-dimensional vector space $T_{x(u)} M$, the second derivatives might contain a normal component, i.e.,

$$
\partial_{i j} x(u)=\sum_{k=1}^{n} \Gamma_{i j}^{k}(u) \partial_{k} x(u)+\alpha_{i j}(u) N(u)
$$

The n^{3} scalar functions $\Gamma_{i j}^{k}: U \rightarrow \mathbb{R}$ are called Christoffel symbols.
They are symmetric in i and j, i.e., $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$. (Why?)

IN2238 - Analysis of Three-Dimensional Shapes
11. Geodesics and Curvature - 4 / 26

Christoffel Symbols and Metric

Using $\partial_{i} g_{j \ell}(u)=\left\langle\partial_{i j} x(u), \partial_{\ell} x(u)\right\rangle+\left\langle\partial_{i \ell} x(u), \partial_{j} x(u)\right\rangle$, we obtain

$$
\begin{aligned}
\tilde{\Gamma}_{\ell i j}(u):= & \frac{1}{2}\left[\partial_{i} g_{j \ell}(u)+\partial_{j} g_{\ell i}(u)-\partial_{\ell} g_{i j}(u)\right] \\
= & \frac{1}{2}\left[\left\langle\partial_{i j} x(u), \partial_{\ell} x(u)\right\rangle+\left\langle\partial_{i \ell} \mathbf{x}(\mathbf{u}), \partial_{\mathbf{j}} \mathbf{x}(\mathbf{u})\right\rangle+\left\langle\partial_{\mathbf{j} \ell} \mathbf{x}(\mathbf{u}), \partial_{\mathrm{i}} \mathbf{x}(\mathbf{u})\right\rangle+\right. \\
& \left.\left\langle\partial_{j i} x(u), \partial_{\ell} x(u)\right\rangle-\left\langle\partial_{\ell \mathrm{i}} \mathbf{x}(\mathbf{u}), \partial_{\mathbf{j}} \mathbf{x}(\mathbf{u})\right\rangle-\left\langle\partial_{\ell \mathbf{j}} \mathbf{x}(\mathbf{u}), \partial_{\mathbf{i}} \mathbf{x}(\mathbf{u})\right\rangle\right] \\
= & \left\langle\partial_{i j} x(u), \partial_{\ell} x(u)\right\rangle=\sum_{k=1}^{n} \Gamma_{i j}^{k}(u) g_{k \ell}(u)
\end{aligned}
$$

If we use the notation $g^{i j}(u):=\left(g(u)^{-1}\right)_{i j}$, we obtain

$$
\sum_{\ell=1}^{n} g^{k \ell}(u) \tilde{\Gamma}_{\ell i j}(u)=\sum_{k^{\prime}=1}^{n} \sum_{\ell=1}^{n} g^{k \ell}(u) g_{\ell k^{\prime}}(u) \Gamma_{i j}^{k^{\prime}}(u)=\Gamma_{i j}^{k}(u)
$$

Example: Sphere

Covariant Derivative Geodesics Second Fundamental Form

Given the coordinate map

$$
\begin{aligned}
x:]-\frac{\pi}{3}, \frac{\pi}{3}[\times]-\frac{\pi}{3}, \frac{\pi}{3}[& \rightarrow \mathbb{S}^{2} \\
\left(\alpha_{1}, \alpha_{2}\right) & \mapsto\left(\begin{array}{c}
\cos \left(\alpha_{1}\right) \cos \left(\alpha_{2}\right) \\
\sin \left(\alpha_{1}\right) \cos \left(\alpha_{2}\right) \\
\sin \left(\alpha_{2}\right)
\end{array}\right)
\end{aligned}
$$

we obtain the Riemannian metric

$$
g\left(\alpha_{1}, \alpha_{2}\right)=\left(\begin{array}{cc}
\cos \left(\alpha_{2}\right)^{2} & 0 \\
0 & 1
\end{array}\right)
$$

and the Christoffel symbols

$$
\Gamma^{1}\left(\alpha_{1}, \alpha_{2}\right)=-\frac{\sin \left(2 \alpha_{2}\right)}{2 \cos \left(\alpha_{2}\right)^{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \Gamma^{2}\left(\alpha_{1}, \alpha_{2}\right)=\frac{\sin \left(2 \alpha_{2}\right)}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$ Covariant Derivative Geodesics Second Fundamental Form

Parametrization

$" \nabla_{\partial_{1} x} \partial_{1} x "$

IN2238 - Analysis of Three-Dimensional Shapes

$" \partial_{1} x "$

$" \nabla_{\partial_{1} x} \partial_{2} x "=" \nabla_{\partial_{2} x} \partial_{1} x "$
$" \partial_{2} x "$

$" \nabla_{\partial_{2} x} \partial_{2} x "$

$\nabla_{Z} Y$ can be formulated in a simpler manner if Y and Z can be extended to the ambient space \mathbb{R}^{n+1} of M. To this end let

$$
\tilde{Y}, \tilde{Z}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}
$$

with $\tilde{Y} \mid M=Y$ and $\tilde{Z} \mid M=Z$.
Then, we have for every $p \in M$

$$
\nabla_{Z} Y(p)=\pi_{T_{p} M}(D \tilde{Y}(p) \cdot \tilde{Z}(p))
$$

where

$$
\pi_{T_{p} M}: \mathbb{R}^{n+1} \rightarrow T_{p} M
$$

is the orthogonal projection of the ambient space \mathbb{R}^{n+1} onto $T_{p} M$.

IN2238 - Analysis of Three Dimensional Shapes

11. Geodesics and Curvature - 11 / 26

Whit Shortest Path in Local Coordinates

Given a coordinate map $x: U \rightarrow M$ of the n-dimensional manifold M, we like to find the shortest path $\gamma:[0,1] \rightarrow U$ that connects two points $u_{0}, u_{1} \in U$.
The length of γ is induced by the Riemannian metric $g: U \rightarrow \mathbb{R}^{n \times n}$ via

$$
\text { length }(\gamma)=\int_{0}^{1}\langle\dot{\gamma}(t), g(\gamma(t)) \cdot \dot{\gamma}(t)\rangle^{\frac{1}{2}} \mathrm{dt}
$$

It is often easier to consider the following energy function instead

$$
E(\gamma)=\left[\int_{0}^{1}\langle\dot{\gamma}(t), g(\gamma(t)) \cdot \dot{\gamma}(t)\rangle \mathrm{dt}\right]^{\frac{1}{2}}
$$

Using the Cauchy-Schwarz inequality, we obtain

$$
\text { length }(\gamma) \leqslant E(\gamma)
$$

with equality iff $\|\dot{\gamma}\|_{g} \equiv$ const, i.e., γ is uniformly parametrized.

IN2238-Analysis of Three-Dimensional Shapes
11. Geodesics and Cuvature - 14 / 26

Let us select the two minimizers $\gamma^{*} \in \operatorname{argmin} \operatorname{length}(\cdot)$ and $\hat{\gamma} \in \operatorname{argmin} E(\cdot)$.
Further we assume that $\bar{\gamma}^{*}$ is a uniform re-parametrization of γ^{*}.
Then we have

$$
\text { length }\left(\gamma^{*}\right)=\operatorname{length}\left(\bar{\gamma}^{*}\right)=E\left(\bar{\gamma}^{*}\right) \geqslant E(\hat{\gamma}) \geqslant \text { length }(\hat{\gamma}) \geqslant \text { length }\left(\gamma^{*}\right)
$$

Therefore, we know

Every minimizer of E minimizes length
The minimum of E is the minimal length
The minimizer of E is uniformly parametrized
$\left[\operatorname{length}(\hat{\gamma})=\operatorname{length}\left(\gamma^{*}\right)\right]$
$[\operatorname{length}(\hat{\gamma})=E(\hat{\gamma})]$
$[$ length $(\hat{\gamma})=E(\hat{\gamma})]$

Minimizing E provides us with a uniformly parametrized shortest path between two points. Every local minimum of E is called geodesic.

Geodesic Equation in Terms of the Covariant Derivative

Given a geodesic $c:(0,1) \rightarrow M$, we have for $\dot{c}=\sum_{i=1}^{n} \dot{\gamma}^{i} \partial_{i} x$

$$
\begin{aligned}
\frac{\nabla}{\mathrm{dt}} \dot{c} & =\sum_{k=1}^{n}\left[\ddot{\gamma}^{k}+\sum_{i, j=1}^{n} \dot{\gamma}^{i} \Gamma_{i j}^{k} \dot{\gamma}^{j}\right] \partial_{k} x \\
& =\sum_{k=1}^{n}\left[\ddot{\gamma}^{k}+\left\langle\dot{\gamma}, \Gamma^{k} \dot{\gamma}\right\rangle\right] \partial_{k} x=0
\end{aligned}
$$

The geodesic equation can therefore be written as

$$
\frac{\nabla}{\mathrm{dt}} \dot{c}=0
$$

Since $\frac{\nabla}{\mathrm{dt}} \dot{c}$ measures how different a curve c is from a geodesic we can use it to define the geodesic curvature of a curve.
X and c, but not on the extension of Y and Z. Thus, $\frac{\nabla}{\mathrm{dt}}$ is well defined.

IN2238 - Analysis of Three-Dimensional Shapes
11. Geodesics and Curvature - 17 / 26

Given a curve $c:(0, L) \rightarrow \mathbb{R}^{2}$ parametrized by arc-length $(\|\dot{c}\| \equiv 1)$, the curvature $\kappa(t)$ at $c(t)$ can be computed via

$$
\kappa(t)=\frac{\operatorname{det}(\dot{c}(t), \ddot{c}(t))}{\|\dot{c}(t)\|^{3}}=\operatorname{det}(\dot{c}(t), \ddot{c}(t))
$$

Given a curve $c:(0, L) \rightarrow M$ in the 2D manifold M that is parametrized by arc-length, we can compute the geodesic curvature $\kappa_{g}(t)$ by replacing \ddot{c} with $\frac{\nabla}{\mathrm{dt}} \dot{c}$ and obtain

$$
\kappa_{g}(t)=\operatorname{det}\left(\dot{c}(t), \frac{\nabla}{\mathrm{dt}} \dot{c}(t)\right)
$$

The geodesic curvature is 0 for geodesics and can therefore be understood as an intrinsic reformulation of the classical curvature of curves.

IN2238 - Analysis of Three Dimensional Shapes

11. Geodesics and Curvature - 19 / 26

Given a 2D manifold $M \subset \mathbb{R}^{3}$, we call a smooth mapping

$$
N: M \rightarrow \mathbb{S}^{2} \quad \forall p \in M: N(p) \perp T_{p} M
$$

its Gauss map. For every 3D shape there exists such a mapping. (Why?)
If $x: U \rightarrow M$ is a coordinate mapping, we can always define a local Gauss map via

$$
\begin{aligned}
N: M & \rightarrow \mathbb{S}^{2} \\
p & \mapsto \frac{\partial_{1} x(u) \times \partial_{2} x(u)}{\left\|\partial_{1} x(u) \times \partial_{2} x(u)\right\|} \quad \text { for } u=x^{-1}(p)
\end{aligned}
$$

If $M=f^{-1}(c)$ is given implicitly via a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the Gauss map is given via $N(p)=\frac{\nabla f(p)}{\|\nabla f(p)\|}$.

IN2238 - Analysis of Three-Dimensional Shapes
11. Geodesics and Curvature -21 / 26

Self-Adjointness of the Shape Operator
 Covariant Derivative Geodesics Second Fundamental Form

We know (Linear Algebra) that self-adjoint endomorphisms are diagonalizable with real eigenvalues. Therefore, we have to prove that

$$
\left\langle v_{1}, S_{p}\left(v_{2}\right)\right\rangle=\left\langle S_{p}\left(v_{1}\right), v_{2}\right\rangle \quad \text { for all } v_{1}, v_{2} \in T_{p} M
$$

If v_{1} and v_{2} are co-linear this is obvious. If they are not co-linear, one can find a local coordinate map $x: U \rightarrow M$ with $x(0)=p$ and $v_{i}=\partial_{i} x(0)$.

Using $\left\langle N \circ x(u), \partial_{i} x(u)\right\rangle \equiv 0$ leads to

$$
\begin{aligned}
& 0=\left.\partial_{1}\left\langle N \circ x(u), \partial_{2} x(u)\right\rangle\right|_{u=0}=\left\langle S_{p}\left(v_{1}\right), v_{2}\right\rangle+\left\langle N(p), \partial_{12} x(0)\right\rangle \\
& 0=\left.\partial_{2}\left\langle N \circ x(u), \partial_{1} x(u)\right\rangle\right|_{u=0}=\left\langle S_{p}\left(v_{2}\right), v_{1}\right\rangle+\left\langle N(p), \partial_{21} x(0)\right\rangle
\end{aligned}
$$

which proves the self-adjointness of the shape operator.

IN2238-Analysis of Three-Dimensional Shapes

Second Fundamental Form

Given a 2D manifold $M \subset \mathbb{R}^{3}$ together with its Gauss map $N: M \rightarrow \mathbb{S}^{2}$, we call its differential the shape operator or Weingarten mapping S

$$
\begin{aligned}
S_{p}: T_{p} M & \rightarrow T_{N(p)} \mathbb{S}^{2} \\
v & \mapsto D N(p)[v]
\end{aligned}
$$

Since $T_{N(p)} \mathbb{S}^{2}=N(p)^{\perp}=T_{p} M, S_{p}: T_{p} M \rightarrow T_{p} M$ is an endomorphism.
If we choose a basis of $T_{p} M$, we would obtain a 2×2 matrix, but this matrix would depend on the chosen basis. Nonetheless, the eigenvalues of these matrices would remain the same.

The goal is to show that S_{p} can be put in diagonal form and that both eigenvalues are real.

IN2238 - Analysis of Three-Dimensional Shapes
11. Geodesics and Curvature - 22 / 26

The two eigenvalues $\kappa_{1}(p)$ and $\kappa_{2}(p)$ of S_{p} are called principal curvatures and corresponding eigenvectors $v_{1}(p)$ and $v_{2}(p)$ are called principal curvature directions.

Note that $\kappa_{g}(p)$ along the geodesic c_{i} corresponding to $v_{i}(p)$ is 0 and the curvature of this curve coincides with $\kappa_{i}(p)$. In that sense, we can think of the principal curvatures as natural generalizations of the planar curvature.

We can derive two other curvatures from the principal curvatures:

$$
\begin{array}{lll}
H(p):=\frac{\kappa_{1}(p)+\kappa_{2}(p)}{2} & =\frac{1}{2} \operatorname{tr}(\mathcal{M}) & \\
\text { (mean curvature) } \\
K(p):=\kappa_{1}(p) \cdot \kappa_{2}(p) & =\operatorname{det}(\mathcal{M}) & \\
\text { (Gauss curvature) }
\end{array}
$$

given a representing matrix \mathcal{M} of S_{p}.

Second Fundamental Form

 Second Fundamental FormGiven the shape operator $S_{p}: T_{p} M \rightarrow T_{p} M$, we can define the Second Fundamental Form

$$
\mathbb{I}: T_{p} M \times T_{p} M \rightarrow \mathbb{R} \quad\left(v_{1}, v_{2}\right) \mapsto\left\langle S_{p} v_{1}, v_{2}\right\rangle
$$

This means, we have

$$
\partial_{i j} x=\sum_{k=1}^{n} \Gamma_{i j}^{k} \partial_{k} x-\mathbb{I}\left(\partial_{i} x, \partial_{j} x\right) \cdot N
$$

and the second fundamental form can be computed via

$$
\mathbb{I}\left(\partial_{i} x, \partial_{j} x\right)=-\left\langle\partial_{i j} x, N\right\rangle
$$

Thit Shape Operator in Local Coordinates

 Covariant Derivative Geodesics Second Fundamental FormAny coordinate map $x: U \rightarrow M$ provides for a base $\left\{\partial_{1} x(u), \ldots, \partial_{n} x(u)\right\}$ of $T_{p} M$ for $p=x(u)$. In this base, the shape operator S_{p} can be written as

$$
S_{p}\left(\partial_{j} x(u)\right)=\sum_{i=1}^{n} \mathcal{M}_{j}^{i} \partial_{i} x(u)
$$

This means, we have

$$
\mathbb{I}\left(\partial_{j} x, \partial_{k} x\right)=\left\langle S_{p}\left(\partial_{j} x\right), \partial_{k} x\right\rangle=\sum_{i=1}^{n}\left\langle\mathcal{M}_{j}^{i} \partial_{i} x, \partial_{k} x\right\rangle=\sum_{i=1}^{n} g_{k i} \mathcal{M}_{j}^{i}
$$

In other words the representating matrix \mathcal{M} of S_{p} satisfies the Weingarten equations

$$
\mathcal{M}=g^{-1} \cdot \mathbb{I}
$$

