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12. Gauss Curvature

Theorema Egregium

2 /24
3/ 24

Summary and Notations

B {01z(u),02x(u)} is a base of the tangent plane T, M.

gij(u) = {0;xz(u), 0jz(u)) is the first fundamental form.

N(u) = % = G o x(u) is the Gauss map in local coordinates.
Splvi] = DG(p)[v;] is the shape operator.

I(v1,v2) = {Sp[v1],v2) is the second fundamental form.

Using Ffj for the Christoffel symbols and a;(u) = I(0;2(u), d;x(u)), we have

Given a coordinate map x: U — M and the Gauss map G: M — S? of the surface M < R3, we have for p = z(u) and vy, vs € T,M
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Third Derivatives

Gauss curvature K (p) = det(v(u)) depends on the derivatives of V.

To this end let

2
3gjix = Z 6@Ffj§kl‘ + Ffj@gkl‘ — 3gozijN — OzijﬁgN.
k=1

Observing that do112 = 01212, we obtain for the dyz-component of this expression:

2 2
0TT + Z IHT3, — anvg = i, + Z [T, — aiorf

k=1 k=1
In other words, a111/22 — a121/12 is an intrinsic expression.
IN2238 - Analysis of Three-Dimensional Shapes 12. Gauss Curvature =5 / 24



Theorema Egregium

The following expression is intrinsic:

2 2
2 2 2k 2k
a1ty — Q2 =011 Z g Q2 — Q12 Z g Gkl
k=1 k=1
22 21
=g~ [a11a22 — ajpao1] + g7 [a11012 — ajg011]
Q1102 — 02021
=911 75— =gk
gi11 - 922 — 919

Theorem 1 (Theorema Egregium). The Gauss curvature K is an intrinsic feature. In particular, we have

2
1
K = o (02T — 01T3,) + Z (Flﬁrgk - FlfJ%k)]
k=1
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Riemann Curvature Tensor

For the Theorema Egregium, we seperated the term 0a112 — d1212 in an intrinsic part (using Christoffel Symbols) and an extrinsic part.
Since 0114 = 0121, we were able to express the “extrinsic part” with the help of the Christoffel symbols.

Riemann used this insight in order to define the Riemann Curvature Tensor R. Given two vector fields X and Y it assigns to each vector field Z and new
vector field R(X,Y)Z. If X and Y are given as ¢;x and 0;x of a coordinate map z, R is defined via

R(X,Y)Z =VxVyZ —VyVxZ

In other words, the Gauss curvature can be intrinsically written as

R(&ga:, 81.13)511’, 52.13>

<
h= det(g)
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Different Gauss Curvatures

K>0 K=0 K <0
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Gauss-Bonnet 9 /24

Moving Frame

Given a coordinate map x: U — M, the vector fields dix and dox form a base. Using Gram-Schmidt, we can create three orthonormal vector fields
Y1,Ys,Y3: M — R3 via (p = z(u))

_ O1x(u)
L ]
drx(u) — Y1(p), Oa(u))
Y2P) =15, (w) = Vi1 (p), Ga(w))]

We call these three vector fields a moving frame.

Note that a moving frame can not necessarily be derived from a coordinate map z, but it is quite usefull to have an orthonormal system at each point of the
coordinate domain U respectively its codomain z(U).
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Moving Frame and Coordinate Maps

Parametrization induced Moving Frame
Vector Field
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Derivatives of the Moving Frame

The differentials DY;(p): T,M — R3 can be written as
3
Z (wij(p),v)Yi(p wij(p) € T,M

Since we have (Y;,Y;) = 0, we obtain

0 =D (Yi(p), Y;(p)) [v] = (DYi(p)[v], Y;(p)) + Yi(p), DY;(p)[v])
=(wij(p) +wji(p),v) -

DY (p)[v] 0 (wiz(p),v)  {wis(p),v) Yi(p)
DYs(p)[v] | = | —<wi2(p),v) 0 (waz(p),v) | - | Ya(p)
DY;3(p)[v] —(wi3(p),vy —{w2s(p),v) 0 P
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This means, we have
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Moving Frame and Coordinate Maps

Y1,Ys,Y3 Dyi[Y1] Dyi[Y7] w12
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Winding Number for Circles

Given a closed non-intersecting curve 7v: I — U and its corresponding curve ¢ = z o~y: I — M, we can define the angle function 6: ¢(I) — R via

(p = x(u) = c(t))
0(p) = £(¢(t), Yi(p))

O(p) is unique up to multiples of 27, but if we fix 6(c(0)) € [0,27) there is only one unique 6(-) that remains continuous.

For this setup, we have
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Winding Number for Triangles

A triangle T' can be represented by three vertices vg = z(up) , v1 = z(u1), va = x(u2) € M with connected edges that can be represented as
non-intersecting curves parametrized by arc-length

C;t [O,Ll] - M C(O) =V; C(Ll) =Vip1

Considering also the outer angles «;, we obtain

Z Gg(p)dp+2ai =27

i<3JIme; i<3
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Recap: Geodesic Curvature

Given a curve ¢: (0, L) — M that is parametrized by arc-length, we know that {(¢(t),¢(t)) = 0. Since
have

J6lP) = g (P)ED)
where ¢(t)* is the vector in T,,M that is normal to ¢(t).
Using the angle function 6, we obtain
) = ). )
with
c¢(t) \ _ ( cos(B(p)) sin(0(p))\  (Yi(p)
<é t)i> - (— sin(6(p)) 008(9(19))) <Y2(p)>

vl
EC

(p) contains the component of ¢(t) in T,M, we
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Integrating Geodesic Curvature

We have

and therefore

In other words

Vee =cos(0)VeY1 +sin(0) VY — sin(0)0'Y1 + cos(0)0'Ys

kg ={(V¢¢, —sin(0)Y1 + cos(0)Ya)

=0 + {cos(0)V.:Y1 + sin(0)V:Ya, —sin() Y1 + cos(0)Y2)
=0’ + <W12, C>

S @ a@ o Y[ my@ap Yo -2

i<3 i<3YIme; i<3

IN2238 - Analysis of Three-Dimensional Shapes

15

12. Gauss Curvature — 17 / 24



Recap: Integration Theorem of Gauss

Given a vector field V: R? — R, the integration theorem of Gauss states
f div(V)(z)dx = (V(s),v(s))ds,
s o8

where the boundary 05 of S = R? is a smooth, closed contour.

Assuming that ¢: [0, L] — S is an arc-length parametrization of the boundary and V (z) = (w2(x), —w;(x)), we obtain the integration theorem of Green

L

J O1wa(z) — dowy () dx =f wa(s) - éa(s) —wi(s) - (—¢i(s))ds
S

0
= f w1 (x) dxy +wa(x) dxa
oS
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Integrating wi-

In order to express the integral of (w12, ¢) in means of p alone, we have

| wnt)arap=] @i vam)a

Im¢;

Analogously to the Green integration theorem, one can show that

f<wmmn@ww{Yanmwmmw®=—fMM®
oT T T

In other words the Theorem of Gauss-Bonnet for Triangles is

fTK(p) dp—i—LT Kg(p) dp—i—Z o =27

<3
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Gauss-Bonnet without Boundary

Let us assume we have a smooth triangulation of a closed surface M that uses the vertex set V, the edge set E and the face set F, then we have

2 |F| =) [fTK(p)dp—I—ﬁT/ﬂg(p)dp—i—ZaZ(T)]

TeF <3

:f K(p)dp+ |E| - 27 — |V| - 2
M

In other words the Theorem of Gauss-Bonnet for Closed Surfaces is

f K(p)dp =2r (|F| - |E| + V)
M
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Gauss-Bonnet with Smooth Boundary

Let us assume we have a surface M with a smooth boundary. Further assume a smooth triangulation that uses the vertex set V, the edge set £/ and the
face set F'. Then we have

- . o7
o - |F| 7%}DUTK(p)dvaLT g(p)dp+z : ]

<3

=f K(p)dp+f ko(p)dp + |E| - 27 — |V] - 20
M oM

In other words the Theorem of Gauss-Bonnet for Surfaces With Smooth Boundaries is

f K(p) dp+f bo(p) dp =27 (|F| - |E| + |V])
M oM
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Euler Characteristic
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Euler Chracteristic

Given a triangulation (V, E, F) of a surface M, we call

the Euler Characteristic of M.

Due to the Gauss-Bonnet theorem, we know that

is a global property of M.

For every triangulation (V, E, F') of S? we have

X(M) = V| = |E| + |F| e Z

V| = |B| + |F| = x(8?) = 2
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Gauss Curvature at a Vertex

Given a discrete triangulation (V, E, F) of a surface M, we assume that at a vertex v € V, we have k triangles T3, ..., T} with the angles «;, 8; and ~; (v
at v). It is common to use the following approximation of the Gauss curvature as a feature (point descriptor)

SUL 57T K(p)dp L 2 S i
S garea(T;) X, garea(T;)

K(v) :=
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