

Thitn

Diffeomorphism

A mapping $\Phi: M \rightarrow N$ between two shapes M and N is a diffeomorphism if it is bijective and Φ and Φ^{-1} are C^{1}. If such a mapping exists the shapes are called diffeomorphic.

If two compact surfaces are diffeomorphic they have the same Euler characteristic (i.e. the same genus).

If M and N are diffeomorphic, there are coordinate maps $\left(x_{j}, U_{j}\right)$ and $\left(y_{j}, U_{j}\right)$ uch that $M=\cup x_{j}\left(U_{j}\right)$ and $N=\cup y_{j}\left(U_{j}\right)$.

Most of the shapes we consider come with an intrinsic
symmetry $S: M \rightarrow M$, such that

$$
d_{M}(x, y)=d_{M}(S(x), S(y))
$$

A consequence is that $\Phi: M \rightarrow N$ is not unique:
Φ isometry, S intrinsic symmetry: $d_{M}(x, y)=d_{M}\left(S^{-1}(x), S^{-1}(y)\right)$
$\Rightarrow \Phi \circ S^{-1}$ is also an isometry.

IN2238 - Analysis of Three-Dimensional Shapes
CThit

Equivalent definition

A diffeomorphism $\Phi: M \rightarrow N$ is an isometry iff it preserves angles:

$$
\langle v, w\rangle_{T_{p} M}=\left\langle D \Phi_{p} v, D \Phi_{p} w\right\rangle_{T_{q} N}
$$

for all $v, w \in T_{p} M$ and $q=\Phi(p)$.

Proof (only one direction):

Let $c:[0,1] \rightarrow M$ be a shortest curve connecting $p \in M$ and $q \in M$:
$d(p, q)=L(c)=\int_{0}^{1}\|\dot{c}(t)\| d t$
Then the curve $d: \Phi \circ c:[0,1] \rightarrow N$ has length

$$
L(d)=\int_{0}^{1}\left\|\frac{d}{d t}(\Phi \circ c(t))\right\| d t=\int_{0}^{1}\left\|D \Phi_{c(t)} \dot{c}(t)\right\| d t=\int_{0}^{1}\|\dot{c}(t)\| d t=L(c)
$$

Since there is no shorter curve connecting $\Phi(p)$ and $\Phi(q)$ (why?), it follows

$$
d(p, q)=d(\Phi(p), \Phi(q))
$$

$$
U=(0,2 \pi) \times(0,1)
$$

$$
x(u)=\left(\begin{array}{c}
u_{1} \\
2 u_{2} \\
0
\end{array}\right)
$$

$$
y(u)=\left(\begin{array}{c}
\cos u_{1} \\
\sin u_{1} \\
2 u_{2}
\end{array}\right)
$$

偪

 Distance in graphShortest path between $v_{i}, v_{j} \in V$

$$
\Gamma^{*}\left(v_{i}, v_{j}\right)=\operatorname{argmin}_{\Gamma\left(v_{i}, v_{j}\right)} L\left(\Gamma\left(v_{i}, v_{j}\right)\right)
$$

Length metric in graph

$$
d_{L}\left(v_{i}, v_{j}\right)=\min _{\Gamma\left(v_{i}, v_{j}\right)} L\left(\Gamma\left(v_{i}, v_{j}\right)\right)
$$

Approximates the geodesic distance on the shape.
Shortest path problem: compute $\Gamma^{*}\left(v_{i}, v_{j}\right)$ and $d_{L}\left(v_{i}, v_{j}\right)$ between
any $v_{i}, v_{j} \in V$.
Distance map problem: given a source point $v_{0} \in V$, compute $d\left(v_{i}\right)=d_{L}\left(v_{0}, v_{i}\right)$.

How to compute the shortest path between source v_{0} and v_{i} ?
Bellman principle: there exists $v_{j} \in \mathcal{N}\left(v_{0}\right)$ such that

$$
d_{L}\left(v_{0}, v_{i}\right)=L\left(v_{0}, v_{j}\right)+d_{L}\left(v_{j}, v_{i}\right)
$$

v_{j} has to minimize the path length

$$
d_{L}\left(v_{0}, v_{i}\right)=\min _{v_{j} \in \mathcal{N}\left(v_{i}\right)}\left\{L\left(v_{0}, v_{j}\right)+d_{L}\left(v_{j}, v_{i}\right)\right\}
$$

Recursive dynamic programming equation
$\mathcal{N}\left(v_{0}\right)$

Dijkstra - complexity

$4 \square \square$

While there are still unprocessed vertices
Find and remove minimum
For each unprocecced adjacent vertex
perform update

Every vertex is processed exactly once: $n=|V|$ outer iterations.
Naive minimum extraction complexity: $O(n)$
Can be reduced to $O(\log n)$ using heap data structure
Updating adjacent vertices is in general $O(|\mathcal{N}|)=O(|E|)$ In our case, graph is sparsely connected, update in $O(1)$
Total complexity: $O(n \log n)$

Shapes as graphs

In practice we are working with surfaces discretized as triangular meshes (V, F).
Meshes can be seen as undirected graphs (V, E) with $E \subset V \times V$
For adjacent vertices we define the length function $L: E \rightarrow \mathbb{R}$ as the euclidean distance between the vertices $L\left(v_{i}, v_{j}\right)=\left\|v_{i}-v_{j}\right\|_{2}$

A path between $v_{i}, v_{j} \in V$ is an ordered set of connected edges
$\left.\Gamma\left(v_{i}, v_{j}\right)=\left\{e_{1}, \ldots, e_{k}\right\}=\left\{\left(v_{i_{1}}, v_{i_{2}}\right), \ldots,\left(v_{i_{k}}, v_{i_{k+1}}\right)\right)\right\}$
with $v_{i_{1}}=v_{i}$ and $v_{i_{k+1}}=v_{j}$
The length of a path $\Gamma\left(v_{i}, v_{j}\right)=\left\{e_{1}, \ldots, e_{k}\right\}$ is then given by

$$
L(\Gamma)=\sum_{n=1}^{k} L\left(e_{n}\right)=\sum_{n=1}^{k} L\left(\left(v_{i_{n}}, v_{i_{n+1}}\right)\right)
$$

Bellman's principle of

 optimality

Let $\Gamma^{*}\left(v_{i}, v_{j}\right)$ be the shortest path between $v_{i}, v_{j} \in V$ and $v_{k} \in \Gamma^{*}\left(v_{i}, v_{j}\right)$
Then $\Gamma\left(v_{i}, v_{k}\right)$ and $\Gamma\left(v_{k}, v_{j}\right)$ are shortest sub-paths between v_{i}, v_{k} and v_{k}, v_{j}.

Suppose there exists a shorter path $\Gamma^{\prime}\left(v_{i}, v_{k}\right)$. Then

$$
\begin{aligned}
L\left(\Gamma^{\prime}\left(v_{i}, v_{j}\right)\right) & =L\left(\Gamma^{\prime}\left(v_{i}, v_{k}\right)\right)+L\left(\Gamma\left(v_{k}, v_{j}\right)\right) \\
& <L\left(\Gamma\left(v_{i}, v_{k}\right)\right)+L\left(\Gamma\left(v_{k}, v_{j}\right)\right)=L\left(\Gamma^{*}\left(v_{i}, v_{j}\right)\right)
\end{aligned}
$$

This is a contradiction to Γ^{*} being the shortest path.

Dijkstras algorithm

Initialize $d\left(v_{0}\right)=0$ and $d\left(v_{i}\right)=\infty$ for the rest of the graph.
Initialize queue of unprocessed vertices $Q=V$.
\rightarrow While $Q \neq \emptyset$
Find vertex with smallest value of $d: v=\operatorname{argmin}_{v \in Q} d(v)$
\rightarrow For each unprocecced adjacent vertex $v^{\prime} \in \mathcal{N}(v) \cap Q$
$d\left(v^{\prime}\right)=\min \left\{d\left(v^{\prime}\right), d(v)+L\left(v, v^{\prime}\right)\right\}$
\square Remove v from Q
Return distance map $d\left(v_{i}\right)$.

IN2238 - Analysis of Three-Dimensional Shapes

Grid with 4-neighbor connecitivity
True euclidean distance: $d_{\mathbb{R}^{2}}=\sqrt{2}$
Shortest path in graph (not unique): $d_{L}=2$
Increasing sampling density does not help

How to approximate the metric consistently?

$$
\lim _{h \rightarrow 0} d_{L}=d_{\mathbb{R}^{2}}
$$

Solution 1

Stick to graph representation Change connectivity and sampling Under certain conditions consistency is guaranteed

Solution 2

Stick to given sampling and connectivity Compute distance map on a surface in some representation (e.g. mesh)
Requires a new algorithm

That
 Dijkstras algorithm

Initialize $d\left(v_{0}\right)=0$ and $d\left(v_{i}\right)=\infty$ for the rest of the graph.
Initialize queue of unprocessed vertices $Q=V$.
While $Q \neq \emptyset$
Find vertex with smallest value of $d: v=\operatorname{argmin}_{v \in Q} d(v)$

For each unprocecced adjacent vertex $v^{\prime} \in \mathcal{N}(v) \cap Q$
$d\left(v^{\prime}\right)=\min \left\{d\left(v^{\prime}\right), d(v)+L\left(v, v^{\prime}\right)\right\}$
Remove v from Q
Return distance map $d\left(v_{i}\right)$.
Dijkstra update

We begin with a simplified setup: $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{2}, v_{3}=0$

- d_{3} is given by the point-to-plane distance

$$
d_{3}=\left\langle v_{3}, n\right\rangle+p=p
$$

- We can solve for n and p using the known distances d_{1} and d_{2}

$$
\begin{aligned}
& \left\langle v_{1}, n\right\rangle+p=d_{1} \\
& \left\langle v_{2}, n\right\rangle+p=d_{2}
\end{aligned}
$$

- With $V=\left(v_{1}, v_{2}\right), d=\left(d_{1}, d_{2}\right)$ and $1=(1,1)^{T}$:

$$
V^{T} n+p \cdot 1=d \Leftrightarrow n=V^{-T}(d-p \cdot 1)
$$

- Using $\|n\|=1$ and substituting $Q=\left(V^{T} V\right)^{-1}$ we obtain

$$
d_{3}^{2} \cdot 1^{T} Q 1-2 d_{3} \cdot 1^{T} Q d+d^{T} Q d-1=0
$$

Fast Marching methods (FMM)

- A family of methods
- finds the distance map
- Simulates wavefront propagation from a source set
- A continuius variant of Dijkstra's algorithm
- Consistent approximation of geodesic distance on surface
- Our picture: Fire marching through a
 forest

Fast marching algorithm

Initialize $d\left(v_{0}\right)=0$ and mark it as black.
Initialize $d\left(v_{i}\right)=\infty$ for the rest of the vertices and mark them as green.
Initialize queue of red vertices $Q=\emptyset$.
\Rightarrow While there are still green vertices
Mark green neighbors of black vertices as red and assign edgelength to d.
For each red vertex $v \in Q$
For each triangle sharing the vertex v
Update v from the triangle.
Mark v with minimum value of d as black (remove from Q)
Return distance map $d\left(v_{i}\right)$.

Quadratic equation has two solutions.

Causality: Front can only move forward in time.

$$
\begin{aligned}
d_{3} & >d_{1}, d_{2} \\
d_{3} \cdot 1 & >V^{\top} n+p \cdot 1 \\
d_{3} \cdot 1 & >V^{\top} n+d_{3} \cdot 1 \\
0 & >V^{\top} n \quad \text { (Component wise) }
\end{aligned}
$$

Quadratic equation has two solutions．
Causality：Front can only move forward in time．

$$
\begin{aligned}
d_{3} & >d_{1}, d_{2} \\
d_{3} \cdot 1 & >V^{\top} n+p \cdot 1 \\
d_{3} \cdot 1 & >V^{\top} n+d_{3} \cdot 1 \\
0 & >V^{\top} n \quad \text { (Component wise) }
\end{aligned}
$$

n has to form obtuse angles with both edges $\left(v_{3}, v_{1}\right)$ and $\left(v_{2}, v_{1}\right)$ ．
Smallest solution of quadratic equation violates causality \Rightarrow discard
If largest solution satisfies causality \Rightarrow done

$\langle v, n\rangle+p=0$
IN2238－Analysis of Three－Dimensional Shapes

That
 One sided update

Since $Q=\left(V^{T} V\right)^{-1}$ we have $Q V^{T} V=I$
Rows of $Q V^{T}$ are orthogonal to triangle edges
Monotonicity condition：$Q V^{T} n<0$
Interpretation：
n must form obtuse angles with normals to triangle edges

n must come from within the triangle
One sided update：
If n comes from outside the triangle，project it to one of
the edges
Update reduces to Dikstra update：
$d_{3}=d_{1}+\left\|v_{1}-v_{3}\right\|_{2} \quad$ or $\quad d_{3}=d_{2}+\left\|v_{2}-v_{3}\right\|_{2}$

Acute triangle
All directions in the triangle
satisfy causality and
monotonicity conditions．

Obtuse triangle
Some directions in the triangle violate causality condition！
d_{3} must increase when d_{1} or d_{2} increase：

$$
\nabla_{d} d_{3}=\left(\frac{\partial d_{3}}{\partial d_{1}}, \frac{\partial d_{3}}{\partial d_{2}}\right)^{\top}=\frac{Q\left(d-d_{3} \cdot 1\right)}{1^{T} Q\left(d-d_{3} \cdot 1\right)}>0
$$

Substitute $n=V^{-T}\left(d-d_{3} \cdot 1\right)$

$$
\nabla_{d} d_{3}=\frac{Q V^{T} n}{1^{T} Q V^{T} n}>0
$$

Monotonicity satisfied when both coordinates of $Q V^{T} n$ have the same sign．
$\left.\begin{array}{l}Q \text { is positive definit } \\ \text { Causality condition：} V^{T} n<0\end{array}\right\}$ At least one coordinate of $Q V^{T} n$ is negative

Monotonicity condition：$Q V^{T} n<0$

IN2238－Analysis of Three－Dimensional Shapes
（2h：t

Fast marching update

Solve quadratic equation and select algest solution

$$
d_{3}^{2} \cdot 1^{\top} Q 1-2 d_{3} \cdot 1^{\top} Q d+d^{\top} Q d-1=0
$$

Compute propagation direction

$$
n=V^{-\top}\left(d-d_{3} \cdot 1\right)
$$

If monotonicity condition $Q V^{T} n<0$ is violated

$$
d_{3}=\min \left\{d_{1}+\left\|x_{1}-x_{3}\right\|_{2}, d_{2}+\left\|x_{2}-x_{3}\right\|_{2}\right\}
$$

Set

$$
d\left(x_{3}\right)=\min \left\{d\left(x_{3}\right), d_{3}\right\}
$$

FMM outlook

Inconsistent solution of mesh contains obtuse triangles
Remeshing is costly
Solution：split obtuse triangles by adding virtual connections to non－adjecent vertices
Done as pre－processing step in $O(n)$

Homework

Update step has to be slightly modified for general triangles with ver－ tices in \mathbb{R}^{3}（Translation，Rotation）．

The planar source model can be replaced by a point source model．

