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Diffeomorphism

A mapping ® : M — N between two shapes M and N is a diffeomorphism if
it is bijective and ® and @~ are C*. If such a mapping exists the shapes are
called diffeomorphic.

If two compact surfaces are diffeomorphic they have the same Euler character-
istic (i.e. the same genus).

If M and N are diffeomorphic, there are coordinate maps (z;,U;) and (y;,U;)
uch that M = Uz;(U;) and N = Uy, (Uj).
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Most of the shapes we consider come with an intrinsic
symmetry S : M — M, such that

dur(@,y) = du(S(2), S(y))
A consequence is that @ : M/ — N is not unique:

® isometry, S intrinsic symmetry:
d(,y) = du (S (2), 57 ()
=du(Po 57! (z), 2057} (y))

= ® o057 is also an isometry.

£
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Equivalent definition

A diffeomorphism @ : M — N is an isometry iff it preserves angles:
(v, w)r,p = (DPyv, DOyw) 1, N

forall v,w € T,M and ¢ = ®(p).

Proof (only one direction):
Let¢: [0,1] — M be a shortest curve connecting p € M and ¢ € M:

d(p.q) = Le) = Jy é(0)] dt

Then the curve d: ®oc: [0,1] — N has length

L(d) = fy || &@oc(t)|dt = fy | DBgye(t)|dt = [ || é(t)]ldt = L(c)
Since there is no shorter curve connecting @(p) and (q) (why?), it follows

d(p,q) = d(2(p), 2(q))
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Shape matching
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A mapping ® : M — N between two shapes M and N is an isometry if
du(z,y) = dn(®(x),®(y)) for all points z,y € M. If such a maping exists
M and N are called isometric.

“ot)

dar(@,y) dn (®(2), 2(y))
Many shape matching approaches assume that the shapes to be matched are
(nearly) isometric. The task then becomes to find the (almost-)isometry ®.
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Push forward

We can define the differential of a map between manifolds as we did with co-
ordinate maps. Given a map ® : M — N the differential is a linear map
D®, : T,M — T,N which maps tangent vectors at p € M to tangent vectors at
q=%(p) € N.

Da,

Do, (w) = §'(0)

also called push-forward
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If M and N are given by coordinate maps (z;,U;) and (y;,U;) and @ : M — N
is an isometry then g7 (z ™" (p)) = g7 (y™"(q)) for all ¢ = @(p).

Thus intrinsic quantities are invariant under isometries:

o lenght of curves: L(c) = L(®(c))

* angles between curves: (¢1,é)r,x = (D®éy, Déo)r, 0
o gradient operator: DBV f(p) = Vi (f o ®71)(q)

o divergence operator: divy (D® o V o 1) = D& div (V)
e gaussian curvature: x(p) = x(q)
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Example

U = (0,27) x (0,1)

y(u)

uy
z(u) = | 2up
0
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€oS Uy
= | sinuy
2’U2
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Distance in graph

Shortest path between v;,v; € V

I (vi, v5) = argming,, ,.) L(L(vi,v;))

v;,0;)

Length metric in graph

dp(vi,v5) = minp(y, o) LT (v, v;))

Approximates the geodesic distance on the shape.
Shortest path problem: compute I*(v;,v;) and dp(v;, v;) between
any v;,v; € V.

Distance map problem: given a source point vy € V, compute
d(vi) = dp(vo, vs).
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How to compute the shortest path between source vy and v;?
Bellman principle: there exists v; € A(vo) such that
dp (v, vs) = L(vo, v;) + dp (v, v:)
v; has to minimize the path length
dp (vo, vi) = miny, en (v, {L(vo, vj) + dr (vj, vi)}

Recursive dynamic programming equation

N (vo)
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Dijkstra - complexity

While there are still unprocessed vertices

C

Every vertex is processed exactly once: n = V| outer iterations.
Naive minimum extraction complexity: O(n)

Can be reduced to O(log n) using heap data structure
Updating adjacent vertices is in general O(|\|) = O(|E|)

In our case, graph is sparsely connected, update in O(1)

Total complexity: O(nlogn)
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Find and remove minimum
For each unprocecced adjacent vertex

perform update

Shapes as graphs

In practice we are working with surfaces discretized as triangular meshes (V. F).

Meshes can be seen as undirected graphs (V. E)with E C V x V
For adjacent vertices we define the length function L : E — R as the euclidean
distance between the vertices L(vi, v;) = [[vi — vjl2

A path between v;,v; € V is an ordered set
of connected edges

I'(vi, Uj) = {617 ek} = {(viuviz): ceey (viwvikn))}
with v;, = v; and vy, ,, = v;

The length of a path I'(v;, v;) = {ey, ..., ex} is
then given by

L(D) = Yr_ Llea) = You_y Ll(vi, ,1,))
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Bellman’s principle of
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optimality

Let T*(v;,v;) be the shortest path between v;, v; € V and v, € IT*(v;, v;)

Then I'(v;, v) and I'(vg, v;) are shortest sub-paths between v;, vy, and vy, v;.
™ (vi, vg,) (v, vj)
v; vj
I (vi, vg) v (v, v5)

Suppose there exists a shorter path I (v;, vy,). Then

L(M (v, 05)) = L(T (03, 03)) + L(T (v, v5))
< L(T (v, vp)) + L(M(vg,v5)) = LT (v, 05))

This is a contradiction to I'* being the shortest path.
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Initialize d(vy) = 0 and d(v;) = oo for the rest of the graph.
Initialize queue of unprocessed vertices Q = V..

While @ # 0
Find vertex with smallest value of d: v = argmin, ¢ d(v)
For each unprocecced adjacent vertex v' € N'(v) N Q
L d(v') = min{d(v'), d(v) + L(v,v")}

Remove v from Q

Return distance map d(v;).
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Trouble (in‘the neighborhood) H H

Grid with 4-neighbor connecitivity

True euclidean distance: dpz = v/2

Shortest path in graph (not unique): dz, =2

Increasing sampling density does not help
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How to approximate the metric consistently?

lim d;, = d
h—0 L R2

Solution 1

Stick to graph representation
Change connectivity and sampling
Under certain conditions consistency is guaranteed

Solution 2
Stick to given sampling and connectivity »
Compute distance map on a surface in some
representation (e.g. mesh) <
Requires a new algorithm .
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Dijkstras algorithm

Initialize d(vo) = 0 and d(v;) = oo for the rest of the graph.
Initialize queue of unprocessed vertices Q = V.

While  # 0

Find vertex with smallest value of d: v = argmin, ¢ d(v)

K For each unprocecced adjacent vertex v' € N'(v) N Q
d(v") = min{d(v'),d(v) + L(v,0")}
Remove v from Q

Return distance map d(v;).
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vo
Dijkstra update | Fast Marching update

o Vertex v updated from adjecent vertex
U1

o Vertex v updated from triangle (vy, v, v)

o distance d(v) computed from d(v) o distance d(v) computed from d(v,)

and d(vy)

o Path restricted to graph edges ' Path can pass on mesh faces

Fast Marching methods (FMM)M H

o A family of methods

o finds the distance map

« Simulates wavefront propagation from
a source set
o A continuius variant of Dijkstra’s algorithm

« Consistent approximation of geodesic
distance on surface

o QOur picture: Fire marching through a
forest
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Update step

We begin with a simplified setup: v;, vy, v3 € R?, v3 =0
o d3 is given by the point-to-plane distance
dy = () +p=p
o We can solve for n and p using the known distances d; and dy

(vi,n) +p dy
(v2,n) +p do

o WithV = (1/‘1,1)2), d= (dl,dz) and1= (1, l)T :

Vint+p1 = den = VId-p-1)
o Using [|n|| = 1 and substituting @ = (VV)~! we obtain

d3-1TQ1 —2d3-1TQd +d"Qd—1=0
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Initialize d(vg) = 0 and mark it as black.
Initialize d(v;) = oo for the rest of the vertices and mark them as green.

Initialize queue of red vertices () = 0.
.} While there are still green vertices

Mark green neighbors of black vertices as red and assign edgelength to d.

For each red vertex v € Q)
For each triangle sharing the vertex v

Update v from the triangle.
me\lark v with minimum value of d as black (remove from ())

Return distance map d(v; ).
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o Vertex v3 updated from triangle (vy, v2, v3)

o distance d(vs) computed from d; = d(v;) and dy =
d('(}g)

o model wave front propagating from planar source o
o front hits v; at time d; and v, at time ds

o when does the front hit v3?

Planar source
(v,n) +p=0
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(v,—n)+p=0
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Causality condition

Quadratic equation has two solutions.

Causality: Front can only move forward in time.

d3 > dq,dp
dz-1 > Vin4p-1
dz-1 > Vin4ds-1
0 > V'n (Componentwise)

(v,n) +p=0
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Causality condition H | Monotonicity condition U |

Quadratic equation has two solutions. d3 must increase when d; or d, increase:

Causality: Front can only move forward in time.

od3 0d3\T _ QU-d3-1) _
d3 > dq,dp

Vads = (283, =043 )
a3 <8d1 ady 1TQ(d —d3 - 1)

dz-1 > Vin4p-1 Substitute n = V-7(d — d5 - 1)
dz-1 > Vin4ds-1 QVTn
T Component wise Vadz = 7> 0
0 > V'n (Comp ) vy 1TQvTn
?u:a: ;0 form obtuse angles with both edges (vs, ) and Monotonicity satisfied when both coordinates of QV'"n have the same sign.
T d ) - -

Smallest solution of quadratic equation violates causality @ is positive definit , } At least one coordinate of QV 77 is negative
 discard Causality condition: V'n <0

If largest solution satisfies causality = done Monotonicity condition: QV7n < 0

(v,n) +p=0
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Fast marching update H | H
Since @ = (VTV)~! we have QVTV =1 Solve quadratic equation and select algest solution
Rows of QT are orthogonal to triangle edges d% 1TQ1-2d3-1TQd+d"Qd—1 = 0

Monotonicity condition: QV” -
onotonicity condition: QV"n <0 Compute propagation direction

Interpretation: vy v no= Vv T(d—ds-1)

n must form obtuse angles with normals to triangle edges

n must come from within the triangle If monotonicity condition QV'Tn < 0 is violated

One sided update: , d3 = min{dy + ||z1 — z3||2,d2 + |lz2 — =32}
If n comes from outside the triangle, project it to one of

the edges Set

Update reduces to Dikstra update:

d(z3) = min{d(x3), d
dz3 = di+|v1—w3l2 or dz3 = da+|lv2—w32 3 {d(es), ds}
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FMM outlook H L

Inconsistent solution of mesh contains obtuse triangles
Remeshing is costly

Solution: split obtuse triangles by adding virtual connections to
non-adjecent vertices

Done as pre-processing step in O(n)
Monotonicity

v1 v2

Acute triangle Obtuse triangle

All directions in the triangle Some directions in the triangle
satisfy causality and violate causality condition!

monotonicity conditions.
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Example
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