

ANALYSIS OF THREE-DIMENSIONAL SHAPES FUNCTIONAL MAPS

(IN2238)

Frank R. Schmidt Matthias Vester Zorah Lähner

21st June 2016

SHAPE MATCHING

REPRESENTATION

We already saw for 2D Matchings that a correspondences can be represented as permutation matrices if both shapes have the same number of vertices.

0	1	0	0	0
0	0	0	1	0
1	0	0	0	0
0	0	0	0	1
0	0	1	0	0

$$\min_{P} E(P)$$

s.t. P is permutation

This does not scale well with the size of the shapes

PROBLEMS

FUNCTIONAL MAP

Assume we were given a bijection $T:M\to N$. Given any scalar function $f:M\to\mathbb{R}$ on M we can induce $g:N\to\mathbb{R}$ by

composition.

We can denote this transformation by a functional T_F such that

$$T_F(f) = f \circ T^{-1}$$

NO INFORMATION LOSS

If we know T , we can obviously construct T_F by its definition $T_F(f) = f \circ T^{-1}$

Can we also reconstruct T if we only know T_F ? Yes, we can!

Let $\delta_a:M\to\mathbb{R}$ be an indicator function on M such that

$$e_a(x) = \begin{cases} 1 & \text{if } x = a \\ 0 & \text{otherwise} \end{cases}$$

Then if we call $g=T_F(e_a)$, it must be $g(y)=(e_a\circ T^{-1})(y)=0$ whenever $T^{-1}(y)\neq a$ and g(y)=1 otherwise.

Since T is a bijection, this happens only once and T(a) is the unique point $y \in N$ such that g(y) = 1

LINEARITY

We can show that T_F is a linear map:

$$T_F(\alpha f + g) = (\alpha f + g) \circ T^{-1}$$

$$= \alpha f \circ T^{-1} + g \circ T^{-1}$$
(by linearity of the composition)
$$= \alpha T_F(f) + T_F(g)$$

The key observation is that, while T can be a very complex transformation, T_F always acts linearly.

This means we can give T_F a matrix representation after choosing a basis for two function spaces on M and N .

MATRIX NOTATION

Let $\{\phi_i^M, \phi_j^N\}$ be bases for function spaces $\mathcal{F}(M), \mathcal{F}(N)$ on M, N such that $f = \sum_i a_i \phi_i^M, f \in \mathcal{F}(M)$. Then we can write:

and
$$T_F(f)=T_F\left(\sum_i a_i\phi_i^M\right)=\sum_i a_iT_F\left(\phi_i^M\right)$$

$$T_F\left(\phi_i^M\right)=\sum_j c_{ji}\phi_j^N$$

Putting both together, we get:

$$T_F(f) = \sum_{i} a_i \sum_{j} c_{ji} \phi_j^N = \sum_{j,i} a_i c_{ji} \phi_j^N$$

MATRIX NOTATION

$$T_F(f) = \sum_{j} \sum_{i} a_i c_{ji} \phi_j^N$$
$$= \sum_{j} b_j \phi_j^N$$

We can represent each function f on M by its coefficients a_i , and similarly $T_F(f)$ on N by the coefficients b_j .

Rewriting in matrix notation, we have:

$$T_F(a) = b = Ca$$

If the bases are orthogonal with respect to some inner product $\langle \cdot, \cdot \rangle$, then we can simply write

$$a_i = \langle f, \phi_i^M \rangle$$
 $c_{ij} = \langle T_F(\phi_i^M), \phi_j^N \rangle$

CONSTRUCTING C

Lets take a closer look at $c_{ij} = \langle T_F(\phi_i^M), \phi_j^N \rangle$

We know it holds:

$$Pe_x = e_{T(x)}$$
 Indicator function for vertex $T(x) \in N$

Indicator function for vertex $x \in M$

$$a = \Phi_M^{-1} e_x$$

Indicator function in the chosen basis of M

Ca

Indicator function mapped to the basis of N

$$\Phi_N Ca$$

Indicator function on N in the indicator basis

$$\Phi_N C \Phi_M^{-1} e_x = e_{T(x)}$$

$$\Phi_N C \Phi_M^{-1} = P$$

$$C = \Phi_N^{-1} P \Phi_M$$

CONSTRUCTING C

Lets take a closer look at

$$C = \Phi_N^{-1} P \Phi_M$$
 each column is an eigenfunction permutes rows

Simply put, the Functional map C contains **all the inner products between the basis functions of the two shapes**, after the vertex ordering has been disambiguated by the bijection P.

This relation was actually already visible here:

$$c_{ij} = \langle T_F(\phi_i^M), \phi_j^N \rangle$$

LINEAR MAP

CHOICE OF BASIS

Up until now we have been assuming the presence of a basis for functions defined on the two shapes. The first possibility is to consider the indicator basis on each

shape:

$$\phi_i^M(x) = \begin{cases} 1 & , x = i \\ 0 & , \text{ otherwise} \end{cases}$$

$$C = \Phi_N^{-1} P \Phi_M$$
$$C = P$$

$$Ca = b$$
 $Pa = b$
 P permutation matrix

LBO EIGENFUNCTION BASIS

But we already learned about another possibility last week!

The eigenfunctions of the Laplace-Beltrami operator form an orthogonal basis (w.r.t. the weighted inner product $\langle \cdot, \cdot \rangle_M$) for l^2 functions on each shape.

In particular, we can approximate:

$$f = \sum_{i=0}^{\infty} a_i \phi_i^M \approx \sum_{i=0}^{m} a_i \phi_i^M$$

LBO EIGENFUNCTION BASIS

This means we can also approximate:

$$f = \sum_{i,j=0}^{\infty} a_i c_{ij} \phi_j^N \approx \sum_{i,j=0}^{m} a_i c_{ij} \phi_j^N$$

Looking at matrix notation, we are reducing the size of C to $m \times m$

 $m \ll n$

STRUCTURE IN C

Isometries:

Non-Isometries:

EXAMPLES

Note that not every linear map corresponds to a (bijective) point-to-point correspondence.

COMPUTING THE MAP

If we know enough compatible functions a and b we can deduce the linear relation by solving a bunch of linear equations:

$$Ca = b$$

Descriptor preservation

If we are given k descriptors, we can phrase k equations:

$$Ca_1 = b_1$$
$$Ca_2 = b_2$$

 $Ca_k = b_k$

For instance, consider curvature or the Heat Kernel Signature from last week.

Landmark matches

Assume we know T(x) = y for some x. We can calculate the geodesic distance maps on both shapes and use them as constraints:

$$d_x^M(x') = d_M(x, x') = a$$
 $d_y^N(y') = d_N(y, y') = b$

COMPUTING THE MAP

$$C\begin{pmatrix} | & & | \\ \mathbf{a}_1 & \cdots & \mathbf{a}_n \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ \mathbf{b}_1 & \cdots & \mathbf{b}_n \\ | & & | \end{pmatrix} \qquad \begin{array}{c} n < m & \text{under-determined} \\ n = m & \text{full rank} \\ n > m & \text{over-determined} \end{array}$$

$$m \times m \qquad m \times n \qquad m \times n$$

In the common case in which n > m, we can solve the resulting linear system in the least-squares sense:

$$CA = B \Rightarrow C^* = \arg\min_{C} \|CA - B\|_2^2$$

IMPOSING STRUCTURE

If we have prior knowledge about the structure of the map we can also add regularizers to the optimization term:

$$\arg\min_{C} \|CA - B\|_{2}^{2} + \rho(C)$$

For example, diagonal structure for isometries:

$$\arg\min_{C} \|CA - B\|_{2}^{2} + \|C \circ W\|_{2}$$

Imagine the blue line is diagonal...

FUNCTIONS TO CORRESPONDENCE

Once we have found an optimal Functional Map C^* , we may want to convert it back to a point-to-point correspondence.

Simplest idea: Map indicator functions at each point.

This is very inefficient and sensitive to numerical errors from truncation.

FUNCTIONS TO CORRESPONDENCE

Observe that each indicator function around x, when represented in the eigenbasis, has as coefficients the k-th column of the matrix Φ_M^\top where k is the index of point x.

$$\Phi_M^{\top} e_k \in \mathbb{R}^m$$

Representation of one indicator function in the eigenbasis

$$\Phi_M^\top \in \mathbb{R}^{m \times n}$$

Representation of **all** indicator functions in the eigenbasis

 $\Phi_M^{ op}$ can be regarded as a set of n points in \mathbb{R}^m

FUNCTIONS TO CORRESPONDENCE

Clearly, the same can be done for the eigenfunctions on the second shape N

We can find correspondences by aligning both point clouds and searching for nearest neighbors

$$y^* = \arg\min_{y} \|T_F(e_x) - e_y\|_{L^2}^2$$

$$\approx \arg\min_{y} \|C\begin{pmatrix} \phi_1^M(x) \\ \vdots \\ \phi_m^M(x) \end{pmatrix} - \begin{pmatrix} \phi_1^N(y) \\ \vdots \\ \phi_m^N(y) \end{pmatrix} \|_{L^2}^2$$

$$\min_{P \in \{0,1\}^{n \times n}} \|C(\Phi^M)^\top - \Phi^N P\|_F^2$$

$$s.t. \quad P^\top 1 = 1$$

$$P1 = 1$$

EXAMPLE

Recovering correspondences from low-rank Functional Maps is a whole problem on its own.

ISSUES

Even when choosing a small k, a lot of compatible functions are necessary to reliably solve for C without imposing any regularization.

But the regularization terms heavily depend the basis.

Laplace-Beltrami eigenbasis: robust to nearly-isometric deformations only!

The recovered correspondences are often neither bijective nor continuous.

VARIATIONS

Matching Partial Shapes

Moving away from isometries

Extensions for vector fields...

REFERENCES

- Functional Maps: A Flexible Representation of Maps Between Shapes. Ovsjanikov, Ben-Chen, Solomon, Butscher, Guibas. ACM SIGGRAPH, 2012.
- Sparse Modeling of Intrinsic Correspondences. Pokrass, Bronstein, Bronstein, Sprechmann, Sapiro. Computer Graphics Forum, 2014.
- Partial Functional Correspondence. Rodola, Cosmo, Bronstein, Torsello, Cremers. Computer Graphics Forum, 2016.
- Coupled Quasi-Harmonic Bases. Kovnatsky, Bronstein, Bronstein, Glashoff, Kimmel. Computer Graphics Forum, 2013.