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Metric spaces

Let M be a set. The tupel set (M,dy), das : M x M = Ry is a
metric space if

o identity of indiscernibles: dy(z,y) =0z =1y
o symmetry: dy(z,y) = dur(y, 2)
o triangle inequality: dys(z,y) < dyr(z,2) + das(z,y) for all z,y, 2 € M

Satisfying a subset of these properties leads to the definition of
"semi"-metric spaces, "pseudo’-metric spaces, etc.
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Hausdorff distance

The Hausdorff distance between two compact subsets X,V C
(Z,dy) is defined by

d%(X,Y) = max{sup dist z(z, Y), sup dist z (y, X )}
zeX yeY X
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(Y, dy)
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(X,dx)
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Gromov Hausdorff distance H H

The Gromov Hausdorff distance between two metric spaces
(X,dx), (Y, dy) is defined by

dg,r (X,Y) = Zif}fg dy(f(X),9(Y))
The infimum is taken over all ambient spaces Z and isometric embeddings

f:X=7Z,9: Y7

The Gromov Hausdorff distance is a metric on the space of equivalence
classes of metric spaces.

X =Yiff X andY are isometric.
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Heat kernel signature HH

We define the heat kernel signature at a point z € S as the vector
HEKS(z) = (ki (2,2), ... kep(z,2)) € RT
k() =Y M6} (x)
k=0

In this view, each evaluation of the heat kernel in the vector above
describes the amount of heat staying at point = after time ¢, when
starting with a unit heat source (dirac) at z itself.

The HKS also has an informative property. If the eigenvalues of the
Laplacians on S; and S, are not repeated, then:

®:S) — Sy is an isometry iff k7 (x,2) = kP2 (®(z), B(x))
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" Distanceto set, diameter U L

The distance from a point z to a set S in a metric space X is defined
by

dist,(x $) =inf d, (x, ) X @x
The diameter of a set S in a metric space X is defined by

P
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diam(S) = sup d, (x, y)

X,yeS
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Gromov Hausdorff distance H H

Can we define a Hausdorff distance between metric spaces?

The general idea is to embed the two metric spaces (X, dx) and
(Y, dy) into @ new metric space (Z,dz) and compute the Hausdorff
distance in the resulting embeddings.

(z.d;)

=

(Y d ) (Ylle IV‘)
» Uy

Further we define dg(X,Y) < r if and only if there exists a metric
space (Z,dz) and subspaces X',Y" C Z which are isometric to X
and Y such that d (X', Y") < 1.
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The idea is closely related to multidimensional scaling (MDS). There
however the metric space Z = R" is fixed (and euclidean).

14. Euclidean isometries - 8
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Coverings

Let z € X. Anopen ball of radius r > 0 centered at  is defined by
Bi(z)={z € X :dx(z,2) <r}

For a subset A C X, we define
B,(A) = UyeaB,(a)

Aset C C X is an r-covering of X if B,(C) = X.

Let {;)", be a r-covering of X and {y;}", be a r-covering of Y.
Then

‘dgﬂ(X,Y)—dgﬂ({xi i";l,{yj}:_";l)‘ﬁr+r'
This means dgy is consistent to sampling.
If we have a way to compute dgy for dense enough (small ) sam-

plings of X and Y, then it would give us a good approximation to
what happens in the continuous spaces.
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Let {z1,...,2,} C X be a r-covering of the compact metric space (X, dx).
Then

Covering of a shape

den(X for,... o)) <7

This tells us that "shape samplings” are close to the
underlying shapes in the Gromov-Hausdorff sense.
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Can we devise an optimal sampling scheme in a

metric sense? B

&E»gﬁfg i
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Voroni cells

Fix n the number of points we want to have in our
final covering X,.

Non-uniqueness due to
o choice of starting point p;
¢ non-unique maximizer in iterations
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The optimal sampling (with n samples) is the one
minimizing the maximum cluster radius:

eoo{2i}) = max; max,ey; dy(2,2;)
Optimal sampling is NP hard to compute.

However: FPS is "almost” optimal in the sense

530({Iz'fps}) < 2min{zi} max; MaXgey; dz('r» xi)

Each sampling {z;} of a shape X induces a set of
regions {V:}

Vi(X) ={z € Xt dx(z,2;) <dx(z,2;)¥i # j}
These regions are known as Voronoi regions or
Voronoi cells.

Each point z; from the sampling can be seen as a
representative for its Voronoi region.

Nearest neighbor search corresponds to identifica-
tion of Voronoi cell = connection to kd-trees.
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Final samling has progressively increasing density.

ltis efficient to compute.

It is worse than optimal sampling by at most a factor
of 2.
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Correspondence

A correspondence between two sets X and Y is a subset of the
product space R C X x Y satisfying

o for every z € X there exists at least one y € ¥ such that (z,y) € R
o forevery y € Y there exists at least one « € X such that (z,y) € R

Any surjective map f : X — Y defines a cor-
respondence:

R={(zf(z),z € X)}

However not every correspondence is associ-
ated with a map.
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orresponaence and

Gromov Hausdorff

There exists a correspondence R such that

<= dx(a,a') - dy(yy)| < 2 for all pairs
(z,9),(«",y') € R of correspondence ele-
ments.

dGH(X,Y)<T

This allows us to speak about dg just by using correspondences R:
dGH(X,Y) = %infR disR

Intuition: Choose as embedding space (Z,d) one of the metric spaces
(X, dx) (Y, dy).
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For two coverings {z;}"_, and {y;}7", (with sampling radii r and ')
we can define a related distance

dp({zi}, {3i}) = § minrep, maxici jn [dx (2i,3) = dy (e(ip, Y|

where P, denotes the set of all permutations of {1,...n}.

From the bounds we have for r-coverings it can be shown that

den(X,Y) <r 41" +dp({z:}. {ui})
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Discretization

The mthricgdistortion terms can be incorporated into a cost matrix
CeRmxm

C(il)(jm) = |dX(Ii’Ij) - dy(yl:ym)|

(X, ¥1) 0 135 | 234 | 1046 | 764
(X.Y2) | 135 | o
(X, ¥s) | 234 | 1852 o

: 1046 | 112 | 022 | o | 165

1352 12 ni

022 | 2344

764 71 2344 16.5 0

(% Y1) (%4, ¥2) (%, Ya) -
With this notation we can write the distance as

dp({wi}, {y:}) = § mingmax; j.m Cit ) RitRjm

where R is in the space of permutation matrices of size n.
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The distortion of a correspondence R ¢ X x Y is defined by

dis(R) = sup{|dx (z,2') - dy (4,y')| : (z,), (x,9) € R}

Key observation:

dis(R) = 0if and only if R is associated with an isometry.

We say that R is an c-isometry if dis R < e.
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A computational approach U L

We want to compute a correspondence R C X x Y minimizing
don(X.Y) = Linfpdis R
Let us rewrite
den(X.Y) = SinfpdisR
= g infpsup{ldx (z,2') = dy (3,/)] : (2,9), (¢',y') € R}
(= ginkrx-y sup, p ldx(z,2) - dv(f(2), f(2')))

The last equality assumes that the optimal R is associated with a
surjective map f.
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Discretization

A correspondence can be represented by,a marix R € {0,
10
0

Rij=1itz; andy; arein corresbondence.
Asking for a bijection corrersponds to require R to be a permutation matrix.
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% ming max; jl.m C(il)(jm)Rinl‘m
<
31ing Y.+ iy i) Ris Rim
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Gromov Hausdorff relaxed H H

Quadratic Assignment ProbIemM H

We obtain a family of related problems by relaxing the max to a sum.
Fix p > 1 and define the costs as

C((z))(jm) = |dx (i, ;) = dy (Y1, Y

Then we can consider the distance

dg)({%‘} b= %minnePn Zlgi,jgn C((Z))(jm)Rinlm
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Quadratic Assignment Problem H H

1 ) T )
RE{%T}IWWC(R) Cuec(R)

st. Rl=1R"1=1

This combinatorial optimization problem is unfortunately NP-hard.

In the literature there have been several attempts to relax the prob-
lem to make it more tractable. Int the following we will present some
of these approaches.
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An alternative characterization of permutation matrices

Re{o,}™" RT'R=1
gives rise to the spectral relaxation

min  vee(R)” Cvec(R) bistochastic
Re[o,1]nxr
st. RIR=1
or even more relaxed:
min 27 Cx
z€0.1)?
s.d. ITI:’H Spectra|
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dg)({l’i}z {u})= %minwePn 219‘,;‘9 C((S))(jm)Rinlm
Rewriting in matrix notation , we get to the quadratic programm:

min  vec(R)? Cvec(R)
RE{OJ}"X“

st R1=1,R"1=1

where vec(R) is a column-stacked reshaping of R.

The quadratic optimization problem is also known as Quadratic As-
sighment Problem (QAP).
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Bistochastic relaxation H H

Leave the combinatorial setting by allowing the correspondence to

take on continuous values.
min  vec(R)TCvec(R) 01| 0103 [0z 03
Reoer g‘ 03 01 01 01 o.4‘ 2=t
st. R1=1,RT1:1 X { 02030202 01
‘ 0202 01 I 0.1 .
Now each row and column can 02 03 03 01 o1
be regarded as discrete probabil- . -1
ity distributions. ¢ )
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. , T,
RE[I;}ﬁlﬂ Xntec(R) Cuec(R)

st. R1=1,R"1=1

Can be solved via projected gradient descent.

® Slow convergence

® Local optimum

® Implement efficient projection

® Choose good starting point

® Choose step size or do line search
® Binarize the final solution

© Easy to implement
© Local optima are usually good enough in practice
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Spectral relaxation

min 27 Cr
20,1

st 2lz=n

Global optimum given by eigenvector of C' associated to smallest
eigenvalue.

® The final solution is not a correspondence (needs post-processing)
® Needs binarization
® We are losing contact with the Gromov-Hausdorff...

© Easy to implement
© Global optimum
© Efficient
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