
Analysis of Three-Dimensional Shapes Computer Vision Group
F. R. Schmidt, M. Vestner, Z. Lähner Institut für Informatik
Summer Semester 2016 Technische Universität München

Weekly Exercises 3
Room: 02.09.023

Wed, 18.05.2016, 14:00-16:00 (in two weeks!)
Submission deadline: Tue, 17.05.2016, 23:59 to laehner@in.tum.de

Mathematics: Linear Algebra Recap

Exercise 1 (2 points). Consider two parametrizations of an arc

fi : [0, 1] → R
2

f1 : t 7→

(

cos(t)
sin(t)

)

, f2 : t 7→

(

cos(t2)
sin(t2)

)

And the function

s :S1 → R

(x, y) 7→ y

Calculate the integrals
∫ 1

0
(s ◦ fi)(t)dt and compare the results to the line integrals.

Exercise 2 (1 point). Consider a sequence of values xi ∈ R, i ∈ {1, ..., n}. In the lec-
ture we saw that mean(xi) =

∑

i
xi

n
= argminx

√
∑

i(xi − x)2 based on the l2-norm.
Derive an explicit formulation based on the l1-norm, i.e. rewrite argminx

∑

i |xi−x|
without a arg minimum.

The following exercise is related to the lecture on May 9th and probably not
solvable beforehand.

Exercise 3 (4 points). Let M = (V, T ) be a manifold given by a triangle mesh and
f, g piecewise linear functions on M given by their coefficients α, β ∈ R

n in the hat
basis{ψ1, . . . , ψn}. Remember that each triangle Ti is mapped by its own coordinate
map xi and

∫

M
f(x) dx =

∑

i

∫

Ti

f(y) dy.

1. Find a matrix A and vector α such that Aα =
∫

M
f(x) dx.

2. Rewrite 〈f, g〉M =
∫

M
f(x)g(x) dx as a matrix-vector product α⊤Mβ. We call

M the mass matrix.

3. Show that the mass matrix is symmetric and positive definite. With this
properties we know that it defines an inner product 〈a, b〉M = a⊤Mb (and
therefore also induces a norm).

1



Programming: Shape Matching and 3D Shapes

We will consider the same images as in the last exercise, download the supple-
mentary material 02 from the website if you have not done so already. Addi-
tionally there is new supplementary material containing a 3D Shape, a function
extract pointwise contour.m to extract a contour as a sequence of 2D coordi-
nates, LAP.m solving Linear Assignment Problems (actually not with the Hungarian
method...) and visualise matching.m.

Exercise 4 (2 points). Extract pointwise contours of the images bat-9.gif,
device7-1.gif and turtle-1.gif with 100 points.

1. Calculate the integral invariant on each image and evaluate them at the point-
wise contour. Try gaussians kernel with sizes of 10×10, 32×32, 100×100 and
200× 200. (For the std deviations 3, 10, 30, 80) Include figures of your results
in your solution sheet (try scatter with colors for the pointwise contour and
fspecial, conv2, interp2 for the feature).

2. Calculate the shape context on the images with a 101 × 101 kernel divided
into 3 different radii and 10 different angles (in the lecture the kernel had 2
radii and 3 angles). This means you have to produce 30 different kernels and
your feature at each point on the contour will be a R

30 vector.

Exercise 5 (2 points). Calculate the best matching between the pointwise contours
of turtle-1.gif to turtle-19.gif and apple-20.gif. Create the 3 cost matrices
for the linear assignment problem with the 3 different features (curvature, integral
invariant, shape context) and the distance functions proposed in the lecture. Choose
the parameters that you think will work the best. Then solve for the permutation
with LAP.m from the supplementary material. You can visualise your results with
visualise matching.m giving both pointwise contours and your permutation as an
input. Points with the same color are matched to each other. Are the matchings
reasonable?

The following exercise is mostly related to the lecture on May 9th (but it is
possible to do it beforehand).

Exercise 6 (1 point). We represent 3D shapes as triangle meshes M = (V, T )
embedded in R

3. They consist of vertices V = {v1, ..., vn} and triangles T ⊂ V×V×V
connecting them to a closed surface. The coordinates of each vertex are denoted by
x(vi) ∈ R

3. Note that the vertices of a triangle t = (u, v, w) ∈ F are ordered. We
define triangles to be identical if they can be transformed into each other by a cyclic
permutation, i.e. (u, v, w) = (v, u, v) = (w, u, v) but (u, v, w) 6= (w, v, u). The order
defines the direction of the normal and is also called orientation.

1. There are different formats to store triangle meshes. The easiest one is the
vert-tri format consisting of two files, one containing the 3D coordinates and
the other one the triangles. The file name.vert contains n rows with three
double numbers separated by tabs. Each row represents one 3D coordinate.

2



The file name.tri (note that the file name has to be the same as for the
.vert) contains m rows with three positive integer values x ≤ n. Each x refers
to a row/vertex from the .vert file. The order of x in each row defines the
orientation of the triangle. Write a function read vert tri.m that takes a
filename and returns a struct M with fields M.VERT a n× 3 array and M.TRIV a
m×3 array. You can try your function on the cat0 files from the supplementary
material (and see if you did everything correctly in the next exercise).

2. Triangulated surfaces can be plotted in Matlab with trisurf(TRI, X, Y, Z).
You need to give each column of M.VERT separatly to the function. The colors
you see on the surface represent the height function.

3. Implement a function facearea that takes a triangle mesh struct as an input
and returns a R

m vector containing the area of each triangle. You can plot
your function by using trisurf(TRI, X, Y, Z, f) where f is a vector with
as many entries as the numbers of vertices or faces. (Of course the entries
in the vector must be ordered in the same way as the vertices or faces they
correspond to.)

4. Implement a function mass matrix.m that takes a triangle mesh and returns
a sparse diagonal matrix with the mass of each vertex. As a reminder, mi =
∑

j∈N (i)
area(j)

3
, i.e. the sum of the areas of all faces next to vertex i divided by

3.

3


