Analysis of Three-Dimensional Shapes F. R. Schmidt, M. Vestner, Z. Lähner Summer Semester 2016 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 4

Room: 02.09.023 Wed, 25.05.2016, 14:00-16:00

Submission deadline: Tue, 24.05.2016, 23:59 to laehner@in.tum.de

Mathematics: Linear Algebra Recap

Let X be a vector space. An inner product is a function $f: X \times X \to \mathbb{C}$ with the following properties:

- 1. $f(x,x) \ge 0 \quad \forall \ x \in X \text{ and } f(x,x) = 0 \Leftrightarrow x = 0$
- 2. $f(x,y) = \overline{f(y,x)}$
- 3. $f(x + \alpha x', y) = f(x, y) + \alpha f(x', y) \quad \forall x, x', y \in X, \alpha \in \mathbb{C}$

The standard inner product is defined as $\langle x, y \rangle = x^{\top} \bar{y}$, $x, y \in \mathbb{R}^n$. If $M \in \mathbb{R}^{n \times n}$ is a symmetric, positive definite matrix an M-inner product can be defined by taking $\langle x, y \rangle_M = x^{\top} M y$.

A linear operator $T: X \to X$ is called *self-adjoint* w.r.t. an inner product if the following holds:

$$\langle Tx,y\rangle = \langle x,Ty\rangle$$

An eigenvector is an element $0 \neq x \in X$ for which there exists a scalar $\lambda \in \mathbb{C}$ such that

$$Tx = \lambda x$$

The scalar λ is called *eigenvalue*.

Exercise 1. Let $L=M^{-1}S\in\mathbb{R}^{n\times n}$ be self-adjoint w.r.t. the M inner product. Show that the following statements hold.

- 1. S is symmetric (self-adjoint) w.r.t. to the standard inner product.
- 2. The eigenvalues of L are real.
- 3. The eigenvectors v_i, v_j with respective eigenvalues $\lambda_i \neq \lambda_j$ are orthogonal.
- 4. $v_1, ..., v_k$ are eigenvectors of L with the same eigenvalue λ , then $\sum_i \alpha_i v_i$ is also an eigenvector with eigenvalue λ .