Analysis of Three-Dimensional Shapes F. R. Schmidt, M. Vestner, Z. Lähner Summer Semester 2016 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 5

Room: 02.09.023 Wed, 01.06.2016, 14:00-16:00 Submission deadline: Tue, 31.05.2016, 23:59 to laehner@in.tum.de

Mathematics

Exercise 1 (2 points). Find a map $\varphi : T_{\text{ref}} \to \mathbb{R}^3$ that is

- 1. angle-preserving but not area-preserving
- 2. area-preserving but not angle-preserving

 $T_{\text{ref}} = \operatorname{conv}((0,0),(0,1),(1,0))$ is the reference triangle as used in the lecture. The image should be a triangle in 3D.

Exercise 2 (3 points). The stiffness matrix $C \in \mathbb{R}^{n \times n}$ was defined in the lecture as $C_{ij} = \int_{S} \langle \nabla \phi_i(x), \nabla \phi_j(x) \rangle dx$. Show that the entries are equal to

$$C_{ij} = \begin{cases} \frac{\cot(\alpha_{ij}) + \cot(\beta_{ij})}{2} & \text{if } (i, j) \text{ an edge} \\ -\sum_{k \neq i} C_{ik} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

The derivation is similar to the one of the mass matrix shown in Exercise Sheet 3.

Programming

Exercise 3 (4 points). This exercise will contain the first steps for implementing the gradient on triangle meshes $(\mathcal{V}, \mathcal{T})$. The gradient ∇f of a function $f : S \to \mathbb{R}$ can be calculated by taking $\nabla f = g^{-1} \cdot \nabla \tilde{f}$ where g is the first fundamental form and, for a fixed coordinate map x of S, $\tilde{f} : U \to \mathbb{R}$ is such that $f = \tilde{f} \circ x^{-1}$. Since $g = (Dx)^{\top}Dx$, we start with calculating Dx and then g.

1. Remember we have a coordinate map for each triangle individually, but instead of being given the map x_k for each triangle k we only have the vertex coordinates. Think about how each x_k and Dx_k looks like. (Tip: They were already used in Exercise 3.) Implement a function trimesh_differential that takes a triangle mesh and returns a $\mathbb{R}^{3\times 2\times k}$ multi-dimensional array representing all differentials.

- 2. The first fundamental form is constant on each triangle, we can represent it as a $\mathbb{R}^{2 \times 2 \times k}$ matrix. Write a function trimesh_fff that takes the result of trimesh_differential and returns the first fundamental form as a tensor. In theory multiplication of matrices with more dimensions works the same way as with two, but it is not implemented in Matlab so you will have to simulate it with a for loop. The function squeeze will help to return to matrices when taking slices of the tensor.
- 3. Calculate the area of each triangle with the first fundamental form and compare your results to the areas you calculated in Exercise 3 (which were probably done with Heron's formula).