Chapter 0 Organization and Overview

Convex Optimization for Machine Learning \& Computer Vision SS 2017

Tao Wu
Thomas Möllenhoff Emanuel Laude

Computer Vision Group
Department of Informatics
TU München

Organization

Overview

Whether this lecture fits you?

- Numerical implementation (in Matlab or Python)

Whether this lecture fits you?

Prerequisites

- Interest in mathematical theory
- Background in analysis and linear algebra
- Numerical implementation (in Matlab or Python)

Nice plus (but not necessary)

- Experience in machine learning or computer vision
- Knowledge in continuous optimization
- Knowledge in functional analysis

Course overview

(1) Theory of convex analysis
(2) Design and analysis of optimization algorithms
(3) Selected topic: Bilevel optimization

Applications are mostly covered by exercise sessions...

Exercise session

Organizers: Thomas Möllenhoff and Emanuel Laude

- Exercise sheets covering the content of the lecture will be passed out every Wednesday
- Exercises contain theoretical as well as programming problems
- You have one week for the exercise sheets and can turn in your solution
- You may work on the exercises in groups of two
- Reaching at least 60% of the total exercise points results in a 0.3 grade bonus
- If solutions have obviously been copied, both groups will get 0 points

Contact us

- Tao's office: 02.09.061
- Thomas' office: 02.09.060
- Emanuel's office: 02.09.039
- Office hours: Please write an email.
- Lecture: Starts at quarter past. Short break in between.
- Course website:
https://vision.in.tum.de/teaching/ss2017/cvx4cv

First Glimpse of the Course

Overview

Driving cycle

Mathematical Modeling

An example from computer vision / machine learning

- Image segmentation / multi-labeling:

An example from computer vision / machine learning

- Image segmentation / multi-labeling:

segmentation $(L=4)$

- Variational method for finding label function $u: \Omega \rightarrow \Delta^{L}$
minimize $\int_{\Omega}\left(\delta\left\{u(x) \in \Delta^{L}\right\}+u(x) \cdot f(x)\right) d x+\sum_{l=1}^{L} \operatorname{TV}_{\omega}\left(u^{\prime}\right)$ where
- Δ^{L} is the unit $(L-1)$-simplex.
- $f: \Omega \rightarrow \mathbb{R}^{L}$ is the (pre-computed) unary potential.
- $\mathrm{TV}_{\omega}(\cdot)$ is the (weighted) total-variation norm.

Prototypical workflow

- The variational model
minimize $\int_{\Omega}\left(\delta\left\{u(x) \in \Delta^{L}\right\}+u(x) \cdot f(x)\right) d x+\sum_{l=1}^{L} \mathrm{TV}_{\omega}\left(u^{\prime}\right)$
is a special case of convex optimization

$$
\operatorname{minimize} J(u)+\delta\{u \in C\}
$$

with convex objective J and convex constraint C.

- This course is about theory and practice for solving convex optimization (arising from computer vision and machine learning).

Prototypical workflow

- Put into canonical form:

$$
\min _{u} F(K u)+G(u)
$$

where F, G are convex functions, K is a linear operator.

Prototypical workflow

- Put into canonical form:

$$
\min _{u} F(K u)+G(u)
$$

where F, G are convex functions, K is a linear operator.

- Reformulate the problem (by introducing dual variable p):

$$
\max _{p} \min _{u}\langle K u, p\rangle-F^{*}(p)+G(u),
$$

where F^{*} is the convex conjugate of F.

Prototypical workflow

- Put into canonical form:

$$
\min _{u} F(K u)+G(u),
$$

where F, G are convex functions, K is a linear operator.

- Reformulate the problem (by introducing dual variable p):

$$
\max _{p} \min _{u}\langle K u, p\rangle-F^{*}(p)+G(u),
$$

where F^{*} is the convex conjugate of F.

- Apply an iterative scheme (e.g. PDHG):

$$
\begin{aligned}
& u^{k+1}=\arg \min _{u}\left\langle u, K^{\top} p^{k}\right\rangle+G(u)+\frac{s}{2}\left\|u-u^{k}\right\|^{2}, \\
& p^{k+1}=\arg \min _{p}-\left\langle K\left(2 u^{k+1}-u^{k}\right), p\right\rangle+F^{*}(p)+\frac{t}{2}\left\|p-p^{k}\right\|^{2} .
\end{aligned}
$$

Questions of our concern

energy value

primal-dual gap

- Does a minimizer always exist?
- How to characterize a minimizer?
- How to derive an iterative solver?
- How to analyze the convergence of the algorithm?
- How to accelerate the convergence?
- Efficient implementation \rightsquigarrow exercise session.

Ready to start?

