Chapter 1 Convex Analysis

Convex Optimization for Machine Learning & Computer Vision SS 2017

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Set

Convex Function

Existence of Minimizer

Subdifferential Duality

Tao Wu Thomas Möllenhoff Emanuel Laude

Computer Vision Group
Department of Informatics
TU München

updated 26.04.2017

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Duality

Convex Set

Convex Optimization

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Set

Convex Function

Existence of Minimizer

Duality

Subdifferential

Assume

- E is a Euclidean space (finite dimensional vector space),
 equipped with the inner product ⟨·,·⟩, e.g. ⟨u, v⟩ = u · v.
- C is a closed convex subset in \mathbb{E} .
- *J* is a convex objective function.

Convex optimization

minimize J(u) over $u \in C$.

First questions:

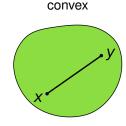
- What is a convex set?
- What is a convex function?

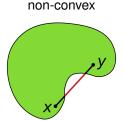
Convex set

Definition

A set C is said to be **convex** if

$$\alpha u + (1 - \alpha)v \in C$$
, $\forall u, v \in C$, $\forall \alpha \in [0, 1]$.





Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Set

Convex Function

Existence of Minimizer

Subdifferential Duality

updated 26.04.2017

Recall basic concepts in analysis

Definition

- A set $C \subset \mathbb{E}$ is **open** if $\forall u \in C$, $\exists \epsilon > 0$ s.t. $B_{\epsilon}(u) \subset C$, where $B_{\epsilon}(u) := \{v \in \mathbb{E} : ||v u|| < \epsilon\}$.
- A set $C \subset \mathbb{E}$ is **closed** if its complement $\mathbb{E} \setminus C$ is open.
- The **closure** of a set $C \subset \mathbb{E}$ is

$$\operatorname{cl} C = \{u \in \mathbb{E} : \exists \{u^k\} \subset C \text{ s.t. } \lim_{k \to \infty} u^k = u\}.$$

• The **interior** of a set $C \subset \mathbb{E}$ is

int
$$C = \{u \in C : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(u) \subset C\}.$$

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Definition

- A set $C \subset \mathbb{E}$ is **open** if $\forall u \in C$, $\exists \epsilon > 0$ s.t. $B_{\epsilon}(u) \subset C$, where $B_{\epsilon}(u) := \{v \in \mathbb{E} : ||v u|| < \epsilon\}$.
- A set $C \subset \mathbb{E}$ is **closed** if its complement $\mathbb{E} \setminus C$ is open.
- The **closure** of a set $C \subset \mathbb{E}$ is

$$\operatorname{cl} C = \{u \in \mathbb{E} : \exists \{u^k\} \subset C \text{ s.t. } \lim_{k \to \infty} u^k = u\}.$$

• The **interior** of a set $C \subset \mathbb{E}$ is

int
$$C = \{u \in C : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(u) \subset C\}.$$

• The **relative interior** of a <u>convex</u> set $C \subset \mathbb{E}$ is

ri
$$C = \{u \in C : \forall v \in C, \exists \alpha > 1 \text{ s.t. } v + \alpha(u - v) \in C\}.$$

Basic properties

The following operations preserve the convexity:

• Intersection: $C_1 \cap C_2$

• Summation: $C_1 + C_2 := \{u^1 + u^2 : u^1 \in C_1, u^2 \in C_2\}$

• Closure: cl C

Interior: int C

- The union of convex sets is not convex in general.

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

COLIVEX SEL

Convex Function

Existence of Minimizer

Subdifferential

Basic properties

The following operations preserve the convexity:

Intersection: C₁ ∩ C₂

• Summation:
$$C_1 + C_2 := \{u^1 + u^2 : u^1 \in C_1, u^2 \in C_2\}$$

 Closure: cl C Interior: int C

- The union of convex sets is not convex in general.

- Polyhedral sets are always convex; cones are not necessarily convex

Convex cone

C is a cone if $C = \alpha C$ for any $\alpha > 0$. C is a convex cone if C is a cone and is convex as well.

Convex Analysis

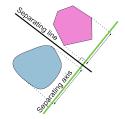
Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Function

Existence of Minimizer

Subdifferential Duality

Separation of convex sets



Theorem (separation of convex sets)

Let C_1 , C_2 be convex subsets in $\mathbb E$ such that $C_1 \cap C_2 = \emptyset$ and C_1 is open. Then there exists a hyperplane separating C_1 and C_2 , i.e. $\exists v \in \mathbb E$, $\alpha \in \mathbb R$ such that

$$\langle \mathbf{v}, \mathbf{u}^1 \rangle \geq \alpha \geq \langle \mathbf{v}, \mathbf{u}^2 \rangle, \quad \forall \mathbf{u}^1 \in \mathbf{C}_1, \ \mathbf{u}^2 \in \mathbf{C}_2.$$

Proof: on board.

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Separation of convex sets

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Set

Convex Function

Existence of Minimizer

Subdifferential Duality

Theorem (separation of convex sets)

Let C_1 , C_2 be convex subsets in $\mathbb E$ such that $C_1 \cap C_2 = \emptyset$ and C_1 is open. Then there exists a hyperplane separating C_1 and C_2 , i.e. $\exists v \in \mathbb E$, $\alpha \in \mathbb R$ such that

$$\langle \mathbf{v}, \mathbf{u}^1 \rangle \geq \alpha \geq \langle \mathbf{v}, \mathbf{u}^2 \rangle, \quad \forall \mathbf{u}^1 \in \mathbf{C}_1, \ \mathbf{u}^2 \in \mathbf{C}_2.$$

Proof: on board.

Remarks

- 1 The proof works in any real Hilbert space.
- Corollary: In a real Hilbert space, any (strongly) closed convex subset C is weakly closed.

Convex Function

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Set

Convex Function

Existence of Minimizer

Subdifferential Duality

- An extended real-valued function J maps from \mathbb{E} to $\overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}.$
- The **domain** of $J:\mathbb{E} \to \overline{\mathbb{R}}$ is

$$dom J = \{u \in \mathbb{E} : J(u) < \infty\}.$$

• The function $J: \mathbb{E} \to \overline{\mathbb{R}}$ is **proper** if dom $J \neq \emptyset$.

Definition

We say $J: \mathbb{E} \to \overline{\mathbb{R}}$ is a convex function if

- 1 dom *J* is a convex set.
- **2** For all $u, v \in \text{dom } J$ and $\theta \in [0, 1]$ it holds that

$$J(\theta u + (1-\theta)v) \le \theta J(u) + (1-\theta)J(v).$$

We say *J* is **strictly convex** if the above inequality is strict for all $\theta \in (0, 1)$ and $u \neq v$.

Examples

• $J_{data}(u) = \|u - z\|_p^p$ where $p \ge 1$ and $\|\cdot\|_p$ is the ℓ^p -norm.

- $J_{regu}(u) = \|Ku\|_q^q$ where $q \ge 1$ and K is linear transform.
- $J(u) = J_{data}(u) + \alpha J_{regu}(u)$ where $\alpha > 0$.

Convex Analysis

Tao Wu
Thomas Möllenhoff
Emanuel Laude

Convex Set

Convex Funct

Existence of Minimizer

Subdifferential

Examples

- $J_{data}(u) = \|u z\|_p^p$ where $p \ge 1$ and $\|\cdot\|_p$ is the ℓ^p -norm.
- $J_{regu}(u) = ||Ku||_q^q$ where $q \ge 1$ and K is linear transform.
- $J(u) = J_{data}(u) + \alpha J_{regu}(u)$ where $\alpha > 0$.
- Indicator function:

$$\delta_{\mathcal{C}}(u) = \begin{cases} 0 & \text{if } u \in \mathcal{C}, \\ \infty & \text{otherwise,} \end{cases}$$

where C is a convex subset of \mathbb{E} .

Alternative formulation of constrained optimization:

$$\min J(u) \text{ over } u \in \textit{\textbf{C}}. \Leftrightarrow \min J(u) + \delta_{\textit{\textbf{C}}}(u) \text{ over } u \in \mathbb{E}.$$

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Basic facts

(As exercises)

- Any norm (over a normed vector space) is a convex function.
- J is a convex function and K is a linear transform
 ⇒ J(K·) is convex function.
- (Jensen's inequality) $J:\mathbb{E} o \overline{\mathbb{R}}$ is convex iff

$$J(\sum_{i=1}^n \alpha_i u^i) \leq \sum_{i=1}^n \alpha_i J(u^i),$$

whenever $\{u^i\}_{i=1}^n \subset \mathbb{E}$, $\{\alpha_i\}_{i=1}^n \subset [0,1]$, $\sum_{i=1}^n \alpha_i = 1$.

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Set

Convex Functio

Existence of Minimizer

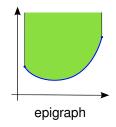
Subdifferential Duality

Epigraph

Definition

The **epigraph** of a proper function $J:\mathbb{E} \to \overline{\mathbb{R}}$ is

$$\mathsf{epi}\, J = \{(u,\alpha) \in \mathbb{E} \times \mathbb{R} : J(u) \leq \alpha\}.$$



Theorem

A proper function $J: \mathbb{E} \to \overline{\mathbb{R}}$ is convex (resp. strictly convex) iff epi J is a convex (resp. strictly convex) set.

Proof: as exercise.

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Set

Convex Functio

Existence of Minimizer
Subdifferential

Lipschitz continuity

Definition

Assume $J: U \to \mathbb{R}$, and U is a nonempty open subset of \mathbb{E} .

1 J is **(globally) Lipschitz** with modulus L > 0 if

$$|J(u^1) - J(u^2)| \le L||u^1 - u^2|| \quad \forall u^1, u^2 \in U.$$

2 *J* is **locally Lipschitz** at $u \in U$ with modulus $L_u > 0$ if there exists $\epsilon > 0$ s.t.

$$|J(u^1) - J(u^2)| \le L_u ||u^1 - u^2|| \quad \forall u^1, u^2 \in B_{\epsilon}(u) \cap U.$$

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Lipschitz continuity

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Definition

Assume $J: U \to \mathbb{R}$, and U is a nonempty open subset of \mathbb{E} .

1 J is **(globally) Lipschitz** with modulus L > 0 if

$$|J(u^1) - J(u^2)| \le L||u^1 - u^2|| \quad \forall u^1, u^2 \in U.$$

2 *J* is **locally Lipschitz** at $u \in U$ with modulus $L_u > 0$ if there exists $\epsilon > 0$ s.t.

$$|J(u^1) - J(u^2)| \le L_u ||u^1 - u^2|| \quad \forall u^1, u^2 \in B_{\epsilon}(u) \cap U.$$

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Duality

Theorem

A proper convex function $J: \mathbb{E} \to \overline{\mathbb{R}}$ is locally Lipschitz at any $u \in \operatorname{ridom} J$.

Proof: on board.

Global vs. Local minimizers

Recall the optimization of $J: \mathbb{E} \to \overline{\mathbb{R}}$:

minimize J(u) over $u \in \mathbb{E}$.

Definition

- 1 $u^* \in \mathbb{E}$ is a global minimizer if $J(u^*) \leq J(u)$ for all $u \in \mathbb{E}$.
- 2 u^* is a local minimizer if $u^* \in \text{dom } J$ and $\exists \epsilon > 0$ s.t. $J(u^*) \leq J(u)$ for all $u \in B_{\epsilon}(u^*)$.

Convex Analysis

Tao Wu Thomas Möllenhoff Emanuel Laude

Convex Set

Existence of Minimizer

Subdifferential Duality

updated 26.04.2017

Global vs. Local minimizers

Convex Analysis
Tao Wu

Thomas Möllenhoff Emanuel Laude

Convex Set

Convex Function

Existence of Minimizer Subdifferential

Duality

Recall the optimization of $J: \mathbb{E} \to \overline{\mathbb{R}}$:

minimize J(u) over $u \in \mathbb{E}$.

Definition

- 1 $u^* \in \mathbb{E}$ is a global minimizer if $J(u^*) \leq J(u)$ for all $u \in \mathbb{E}$.
- 2 u^* is a **local minimizer** if $u^* \in \text{dom } J$ and $\exists \epsilon > 0$ s.t. $J(u^*) \leq J(u)$ for all $u \in B_{\epsilon}(u^*)$.

Theorem

Assume that $J: \mathbb{E} \to \overline{\mathbb{R}}$ is a proper convex function. Then any local minimizer of J is also global.

Proof: on board.