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Convex Optimization

Assume

• E is a Euclidean space (finite dimensional vector space),
equipped with the inner product 〈·, ·〉, e.g. 〈u, v〉 = u · v .

• C is a closed convex subset in E.
• J is a convex objective function.

Convex optimization

minimize J(u) over u ∈ C.

First questions:
• What is a convex set?
• What is a convex function?
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Convex set

Definition

A set C is said to be convex if

αu + (1− α)v ∈ C, ∀u, v ∈ C, ∀α ∈ [0,1].

convex non-convex
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Recall basic concepts in analysis

Definition

• A set C ⊂ E is open if ∀u ∈ C, ∃ε > 0 s.t. Bε(u) ⊂ C,
where Bε(u) := {v ∈ E : ‖v − u‖ < ε}.

• A set C ⊂ E is closed if its complement E\C is open.
• The closure of a set C ⊂ E is

cl C = {u ∈ E : ∃{uk} ⊂ C s.t. lim
k→∞

uk = u}.

• The interior of a set C ⊂ E is

int C = {u ∈ C : ∃ε > 0 s.t. Bε(u) ⊂ C}.

• The relative interior of a convex set C ⊂ E is

ri C = {u ∈ C : ∀v ∈ C,∃α > 1 s.t. v + α(u − v) ∈ C}.
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Basic properties

The following operations preserve the convexity:
• Intersection: C1 ∩ C2

• Summation: C1 + C2 := {u1 + u2 : u1 ∈ C1,u2 ∈ C2}
• Closure: cl C
• Interior: int C

– The union of convex sets is not convex in general.

– Polyhedral sets are always convex; cones are not necessarily
convex.

Convex cone

C is a cone if C = αC for any α > 0. C is a convex cone if C
is a cone and is convex as well.
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Separation of convex sets

Theorem (separation of convex sets)

Let C1, C2 be convex subsets in E such that C1 ∩ C2 = ∅ and
C1 is open. Then there exists a hyperplane separating C1 and
C2, i.e. ∃v ∈ E, α ∈ R such that〈

v ,u1〉 ≥ α ≥ 〈v ,u2〉 , ∀u1 ∈ C1, u2 ∈ C2.

Proof: on board.

Remarks

1 The proof works in any real Hilbert space.
2 Corollary: In a real Hilbert space, any (strongly) closed

convex subset C is weakly closed.
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Convex functions

• An extended real-valued function J maps from E to
R := R ∪ {∞}.

• The domain of J : E→ R is

dom J = {u ∈ E : J(u) <∞}.

• The function J : E→ R is proper if dom J 6= ∅.

Definition

We say J : E→ R is a convex function if

1 dom J is a convex set.

2 For all u, v ∈ dom J and θ ∈ [0, 1] it holds that

J(θu + (1− θ)v) ≤ θJ(u) + (1− θ)J(v).

We say J is strictly convex if the above inequality is strict for
all θ ∈ (0,1) and u 6= v .
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Examples

• Jdata(u) = ‖u − z‖p
p where p ≥ 1 and ‖ · ‖p is the `p-norm.

• Jregu(u) = ‖Ku‖q
q where q ≥ 1 and K is linear transform.

• J(u) = Jdata(u) + αJregu(u) where α > 0.

• Indicator function:

δC(u) =

{
0 if u ∈ C,
∞ otherwise,

where C is a convex subset of E.

• Alternative formulation of constrained optimization:

min J(u) over u ∈ C. ⇔ min J(u) + δC(u) over u ∈ E.
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Thomas Möllenhoff
Emanuel Laude

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Duality

updated 26.04.2017

Examples

• Jdata(u) = ‖u − z‖p
p where p ≥ 1 and ‖ · ‖p is the `p-norm.

• Jregu(u) = ‖Ku‖q
q where q ≥ 1 and K is linear transform.

• J(u) = Jdata(u) + αJregu(u) where α > 0.

• Indicator function:

δC(u) =

{
0 if u ∈ C,
∞ otherwise,

where C is a convex subset of E.

• Alternative formulation of constrained optimization:

min J(u) over u ∈ C. ⇔ min J(u) + δC(u) over u ∈ E.



Convex Analysis

Tao Wu
Thomas Möllenhoff
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Basic facts

(As exercises)
• Any norm (over a normed vector space) is a convex

function.

• J is a convex function and K is a linear transform
⇒ J(K ·) is convex function.

• (Jensen’s inequality) J : E→ R is convex iff

J(
n∑

i=1

αiui) ≤
n∑

i=1

αiJ(ui),

whenever {ui}n
i=1 ⊂ E, {αi}n

i=1 ⊂ [0,1],
∑n

i=1 αi = 1.
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Epigraph

Definition

The epigraph of a proper function J : E→ R is

epi J = {(u, α) ∈ E× R : J(u) ≤ α}.

epigraph

Theorem

A proper function J : E→ R is convex (resp. strictly convex) iff
epi J is a convex (resp. strictly convex) set.

Proof: as exercise.
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Lipschitz continuity

Definition

Assume J : U → R, and U is a nonempty open subset of E.
1 J is (globally) Lipschitz with modulus L > 0 if

|J(u1)− J(u2)| ≤ L‖u1 − u2‖ ∀u1,u2 ∈ U.

2 J is locally Lipschitz at u ∈ U with modulus Lu > 0 if
there exists ε > 0 s.t.

|J(u1)− J(u2)| ≤ Lu‖u1 − u2‖ ∀u1,u2 ∈ Bε(u) ∩ U.

Theorem

A proper convex function J : E→ R is locally Lipschitz at any
u ∈ ri dom J.

Proof: on board.
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Global vs. Local minimizers

Recall the optimization of J : E→ R:

minimize J(u) over u ∈ E.

Definition

1 u∗ ∈ E is a global minimizer if J(u∗) ≤ J(u) for all u ∈ E.
2 u∗ is a local minimizer if u∗ ∈ dom J and ∃ε > 0

s.t. J(u∗) ≤ J(u) for all u ∈ Bε(u∗).

Theorem

Assume that J : E→ R is a proper convex function. Then any
local minimizer of J is also global.

Proof: on board.
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