Proofs in SS'17 Convex Optimization Lectures*

Last updated: May 3, 2017

1 Convex Analysis

Theorem 1.1 (separation of convex sets). Let C_1 , C_2 be nonempty convex subsets in \mathbb{E} such that $C_1 \cap C_2 = \emptyset$ and C_1 is open. Then there exists a hyperplane separating C_1 and C_2 , i.e. $\exists v \in \mathbb{E}$, $\alpha \in \mathbb{R}$ such that

$$\langle v, u^1 \rangle \ge \alpha \ge \langle v, u^2 \rangle, \quad \forall u^1 \in C_1, \ u^2 \in C_2.$$

Proof. (i) Claim: Let $C \subset \mathbb{E}$ be closed, convex set, and $w \in \mathbb{E} \setminus C$. Then $\exists v \in \mathbb{E}, \alpha \in \mathbb{R}$ s.t. $\langle v, w \rangle > \alpha \ge \langle v, u \rangle \ \forall u \in C$.

Consider the projection of w onto C, i.e. set $u^* := \arg \min_{u \in C} \frac{1}{2} ||u - w||^2$ or, equivalently, let $\langle u - u^*, u^* - w \rangle \ge 0 \ \forall u \in C$.

Now set $v := w - u^* \neq 0$. Then $\forall u \in C$, we have $\langle v, w \rangle = \langle w - u^*, w \rangle = ||w - u^*||^2 + \langle w - u^*, u^* \rangle \geq ||w - u^*||^2 + \langle w - u^*, u \rangle = ||v||^2 + \langle v, u \rangle$. Set $\alpha := \sup\{\langle v, u \rangle : u \in C\}$. Note $\alpha < \infty$ since $\langle v, u \rangle \leq \langle v, u^* \rangle \ \forall u \in C$. Thus $\langle v, w \rangle > \alpha \geq \langle v, u \rangle \ \forall u \in C$, which proves the claim. (ii) Assume $C_2 = \{\bar{w}\}$ with $\bar{w} \in C_1$. Since $\mathbb{E} \setminus C_1$ is closed, $\exists w^k \in \mathbb{E} \setminus C_1$ s.t. $w^k \to \bar{w}$. For each w^k , by (i), $\exists v^k \in \mathbb{E}$ with $||v^k|| \equiv 1$ s.t. $\langle v^k, w^k \rangle \leq \langle v^k, u^1 \rangle \ \forall u^1 \in C_1$. Hence $v^k \to \bar{v} \in \mathbb{E}$ along a subsequence s.t. $||\bar{v}|| = 1$ and $\langle \bar{v}, \bar{w} \rangle \leq \langle \bar{v}, u^1 \rangle \ \forall u^1 \in C_1$.

(iii) Consider C_2 as a general convex subset of \mathbb{E} . Set $C := C_2 - C_1 = \{u^2 - u^1 : u^1 \in C_1, u^2 \in C_2\}$. Note that C is a convex, open set, and $0 \in C$. By (ii), $\exists \bar{v}$ with $\bar{v} = 1$ s.t. $\langle -\bar{v}, u^2 - u^1 \rangle \geq \langle -\bar{v}, 0 \rangle = 0$ or, equivalently, $\langle \bar{v}, u^1 \rangle \geq \langle \bar{v}, u^2 \rangle \quad \forall u^1 \in C_1, u^2 \in C_2$. Set $\alpha := \sup\{\langle \bar{v}, u^2 \rangle : u^2 \in C_2\}$, then we conclude that $\langle \bar{v}, u^1 \rangle \geq \alpha \geq \langle \bar{v}, u^2 \rangle \quad \forall u^1 \in C_1, u^2 \in C_2$. \Box

Theorem 1.2. A proper convex function $J : \mathbb{E} \to \overline{\mathbb{R}}$ is locally Lipschitz at any $u \in \operatorname{ridom} J$.

Proof. (i) Claim: If $\sup\{J(v) : v \in B_{\epsilon}(u)\} < \infty$ for some $\epsilon > 0$, then J is locally Lipschitz at u. Let $M := \sup\{J(v) : v \in B_{\epsilon}(u)\} < \infty$. By convexity of $J, \forall v \in B_{\epsilon}(u) : J(v) \ge 2J(u) - J(2u-v) \ge 2J(u) - M$. Thus, $\|J\|_{B_{\epsilon}(u)} := \sup\{|J(v)| : v \in B_{\epsilon}(u)\} \le M + 2|J(u)|$.

Next we show J is Lipschitz on $B_{\epsilon/2}(u)$. Let $v, w \in B_{\epsilon/2}(u)$ be given. Take $z \in B_{\epsilon}(u)$ s.t. w = (1-t)v + tz for some $t \in [0,1]$ and $||z-v|| \ge \epsilon/2$. By convexity, $J(w) - J(v) \le t(J(z) - J(v)) \le 2t(M - J(u))$. Since t(z-v) = w - v, we have $t \le ||w-v||/||z-v|| \le 2||w-v||/\epsilon$ and $J(w) - J(v) \le (4(M - J(u))/\epsilon)||w-v||$. Analogously, one can show $J(v) - J(w) \le (4(M - J(u))/\epsilon)||w-v||$. Hence, J is Lipschitz on $B_{\epsilon/2}(u)$ with modulus $4(M - J(u))/\epsilon$.

(ii) Let $u \in \operatorname{ri} \operatorname{dom} J$ and n be the dimension of the affine hull of dom J, then $\exists \{\alpha^i\}_{i=1}^{n+1} \subset (0,1), \{u^i\}_{i=1}^{n+1} \subset \operatorname{dom} J$ s.t. $u = \sum_{i=1}^{n+1} \alpha^i u^i, \sum_{i=1}^{n+1} \alpha^i = 1$, i.e. u belongs to the interior of the convex hull of $\{u^i\}_{i=1}^{n+1}$. Thus one can apply (i) to assert that J is locally Lipschitz at u. \Box

^{*}Please report typos to: tao.wu@tum.de

Theorem 1.3. For any proper convex function $J : \mathbb{E} \to \overline{\mathbb{R}}$, if $u^* \in \text{dom } J$ is a local minimizer of J, then it is also a global minimizer.

Proof. By the definition of a local minimizer, $\exists \epsilon > 0$ s.t. $J(u^*) \leq J(u) \ \forall u \in B_{\epsilon}(u^*)$. For the sake of contradiction, assume $\exists \bar{u} \in \mathbb{E}$ s.t. $J(\bar{u}) < J(u^*)$. By convexity of J, we have $J(\alpha \bar{u} + (1 - \alpha)u^*) \leq J(u^*) - \alpha(J(u^*) - J(\bar{u})) \ \forall \alpha \in [0, 1]$. This violates the local optimality of u^* as $\alpha \to 0^+$.

Theorem 1.4. Any proper function $J : \mathbb{E} \to \overline{\mathbb{R}}$, which is bounded from below, coercive, and *l.s.c.*, has a (global) minimizer.

Proof. Let $\{u^k\}$ be an infimizing sequence for J, i.e. $\lim_{k\to\infty} J(u^k) = \inf_{u\in\mathbb{E}} J(u) > -\infty$. Since $\{J(u^k)\}$ is uniformly bounded from above, by coercivity of J, $\{u^k\}$ is uniformly bounded. By compactness, $u^k \to u^*$ along a subsequence. By l.s.c. of J, we have $J(u^*) \leq \liminf_{k\to\infty} J(u^k) = \inf_{u\in\mathbb{E}} J(u)$, which implies $J(u^*) = \inf_{u\in\mathbb{E}} J(u)$ or u^* is a minimizer of J.

Theorem 1.5. The minimizer of a strictly convex function $J : \mathbb{E} \to \overline{\mathbb{R}}$ is unique.

Proof. Let $u, v \in \mathbb{E}$ be two (global) minimizers s.t. $u \neq v$ and $J(u) = J(v) = J^*$. By strict convexity of J, $J(\alpha u + (1 - \alpha)v) < \alpha J(u) + (1 - \alpha)J(v) = J^*$ for all $\alpha \in (0, 1)$, which contradicts the global optimality of u and v.