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1 Convex Analysis

Theorem 1.1 (separation of convex sets). Let C1, C2 be nonempty convex subsets in E such
that C1∩C2 = ∅ and C1 is open. Then there exists a hyperplane separating C1 and C2, i.e. ∃v ∈
E, α ∈ R such that 〈

v, u1
〉
≥ α ≥

〈
v, u2

〉
, ∀u1 ∈ C1, u

2 ∈ C2.

Proof. (i) Claim: Let C ⊂ E be closed, convex set, and w ∈ E\C. Then ∃v ∈ E, α ∈ R
s.t. 〈v, w〉 > α ≥ 〈v, u〉 ∀u ∈ C.

Consider the projection of w onto C, i.e. set u∗ := arg minu∈C
1
2‖u − w‖

2 or, equivalently,
let 〈u− u∗, u∗ − w〉 ≥ 0 ∀u ∈ C.

Now set v := w − u∗ 6= 0. Then ∀u ∈ C, we have 〈v, w〉 = 〈w − u∗, w〉 = ‖w − u∗‖2 +
〈w − u∗, u∗〉 ≥ ‖w − u∗‖2 + 〈w − u∗, u〉 = ‖v‖2 + 〈v, u〉. Set α := sup{〈v, u〉 : u ∈ C}. Note
α <∞ since 〈v, u〉 ≤ 〈v, u∗〉 ∀u ∈ C. Thus 〈v, w〉 > α ≥ 〈v, u〉 ∀u ∈ C, which proves the claim.

(ii) Assume C2 = {w̄} with w̄ ∈ C1. Since E\C1 is closed, ∃wk ∈ E\C1 s.t. wk → w̄. For
each wk, by (i), ∃vk ∈ E with ‖vk‖ ≡ 1 s.t.

〈
vk, wk

〉
≤
〈
vk, u1

〉
∀u1 ∈ C1. Hence vk → v̄ ∈ E

along a subsequence s.t. ‖v̄‖ = 1 and 〈v̄, w̄〉 ≤
〈
v̄, u1

〉
∀u1 ∈ C1.

(iii) Consider C2 as a general convex subset of E. Set C := C2 − C1 = {u2 − u1 : u1 ∈
C1, u

2 ∈ C2}. Note that C is a convex, open set, and 0 ∈ C. By (ii), ∃v̄ with v̄ = 1
s.t.

〈
−v̄, u2 − u1

〉
≥ 〈−v̄, 0〉 = 0 or, equivalently,

〈
v̄, u1

〉
≥
〈
v̄, u2

〉
∀u1 ∈ C1, u

2 ∈ C2. Set
α := sup{

〈
v̄, u2

〉
: u2 ∈ C2}, then we conclude that

〈
v̄, u1

〉
≥ α ≥

〈
v̄, u2

〉
∀u1 ∈ C1, u

2 ∈ C2.

Theorem 1.2. A proper convex function J : E→ R is locally Lipschitz at any u ∈ ri domJ .

Proof. (i) Claim: If sup{J(v) : v ∈ Bε(u)} <∞ for some ε > 0, then J is locally Lipschitz at u.
Let M := sup{J(v) : v ∈ Bε(u)} < ∞. By convexity of J , ∀v ∈ Bε(u) : J(v) ≥ 2J(u) −

J(2u− v) ≥ 2J(u)−M . Thus, ‖J‖Bε(u) := sup{|J(v)| : v ∈ Bε(u)} ≤M + 2|J(u)|.
Next we show J is Lipschitz on Bε/2(u). Let v, w ∈ Bε/2(u) be given. Take z ∈ Bε(u)

s.t. w = (1 − t)v + tz for some t ∈ [0, 1] and ‖z − v‖ ≥ ε/2. By convexity, J(w) − J(v) ≤
t(J(z)−J(v)) ≤ 2t(M−J(u)). Since t(z−v) = w−v, we have t ≤ ‖w−v‖/‖z−v‖ ≤ 2‖w−v‖/ε
and J(w) − J(v) ≤ (4(M − J(u))/ε)‖w − v‖. Analogously, one can show J(v) − J(w) ≤
(4(M − J(u))/ε)‖w − v‖. Hence, J is Lipschitz on Bε/2(u) with modulus 4(M − J(u))/ε.

(ii) Let u ∈ ri domJ and n be the dimension of the affine hull of dom J , then ∃{αi}n+1
i=1 ⊂

(0, 1), {ui}n+1
i=1 ⊂ dom J s.t. u =

∑n+1
i=1 α

iui,
∑n+1

i=1 α
i = 1, i.e. u belongs to the interior of the

convex hull of {ui}n+1
i=1 . Thus one can apply (i) to assert that J is locally Lipschitz at u.
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Theorem 1.3. For any proper convex function J : E → R, if u∗ ∈ dom J is a local minimizer
of J , then it is also a global minimizer.

Proof. By the definition of a local minimizer, ∃ε > 0 s.t. J(u∗) ≤ J(u) ∀u ∈ Bε(u
∗). For

the sake of contradiction, assume ∃ū ∈ E s.t. J(ū) < J(u∗). By convexity of J , we have
J(αū + (1 − α)u∗) ≤ J(u∗) − α(J(u∗) − J(ū)) ∀α ∈ [0, 1]. This violates the local optimality of
u∗ as α→ 0+.

Theorem 1.4. Any proper function J : E → R, which is bounded from below, coercive, and
l.s.c., has a (global) minimizer.

Proof. Let {uk} be an infimizing sequence for J , i.e. limk→∞ J(uk) = infu∈E J(u) > −∞. Since
{J(uk)} is uniformly bounded from above, by coercivity of J , {uk} is uniformly bounded. By
compactness, uk → u∗ along a subsequence. By l.s.c. of J , we have J(u∗) ≤ lim infk→∞ J(uk) =
infu∈E J(u), which implies J(u∗) = infu∈E J(u) or u∗ is a minimizer of J .

Theorem 1.5. The minimizer of a strictly convex function J : E→ R is unique.

Proof. Let u, v ∈ E be two (global) minimizers s.t. u 6= v and J(u) = J(v) = J∗. By strict
convexity of J , J(αu+(1−α)v) < αJ(u)+(1−α)J(v) = J∗ for all α ∈ (0, 1), which contradicts
the global optimality of u and v.
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