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1 Convex Analysis

Theorem 1.1 (separation of convex sets). Let C1, Cy be nonempty convexr subsets in E such
that C1NCy = () and C is open. Then there exists a hyperplane separating C1 and Cs, i.e. v €
E, a € R such that

<v,u1> >a> <v,u2>, vul € C1, u? € Cs.

Proof. (i) Claim: Let C C E be closed, convex set, and w € E\C. Then Jv € E, o € R
s.t. (v,w) > a > (v,u) Yu e C.

Consider the projection of w onto C, i.e. set u* := arg min,cc %Hu — w||? or, equivalently,
let (u—u*,u* —w) >0VueC.

Now set v := w — u* # 0. Then Yu € C, we have (v,w) = (w—u*,w) = |Jw — u*||* +
(w—u*,u*) > |lw—u*]? + (w—u*,u) = ||v]|*> + (v,u). Set a := sup{{v,u) : u € C}. Note
a < oo since (v,u) < (v,u*) Yu € C. Thus (v,w) > a > (v,u) Yu € C, which proves the claim.

(ii) Assume Co = {w} with w € C;. Since E\Cj is closed, Juw* € E\C; s.t. wk — w. For
each w¥, by (i), 0 € E with [[v¥]| = 1 s.t. (¥, w?) < (vF,u') Vu! € C1. Hence v* — v € E
along a subsequence s.t. ||0]| = 1 and (v, w) < (v,u') Vu' € C.

(iii) Consider C9 as a general convex subset of E. Set C' := Cy — C; = {u2 —ul sl e
C1, u? € Cy}. Note that C is a convex, open set, and 0 € C. By (i), 30 with v = 1
s.t. <—T),u2—u1> > (—v,0) = 0 or, equivalently, <17,u1> > <T),u2> Vul € Cp, u? € Co. Set
o= sup{<17,u2> : u? € Cy}, then we conclude that <17,u1> >a > <17,u2> Vul € Cp, u? € Cy. O

Theorem 1.2. A proper convex function J : E — R is locally Lipschitz at any u € ridom J.

Proof. (i) Claim: If sup{J(v) : v € Be(u)} < oo for some € > 0, then J is locally Lipschitz at wu.

Let M := sup{J(v) : v € B(u)} < oo. By convexity of J, Vv € Bc(u) : J(v) > 2J(u) —
J(2u —v) > 2J(u) — M. Thus, ||J| g (u) := sup{|J(v)| : v € Be(u)} < M + 2|J(u)|.

Next we show J is Lipschitz on Bjy(u). Let v,w € B.js(u) be given. Take z € Bc(u)
st.w = (1 — t)v + tz for some ¢t € [0,1] and ||z — v|| > €/2. By convexity, J(w) — J(v) <
t(J(z)—J(v)) < 2t(M—J(u)). Since t(z—v) = w—v, we have t < [|w—v|/||z—v| < 2|lw—0v]|/e
and J(w) — J(v) < (4(M — J(u))/e)|lw — v||. Analogously, one can show J(v) — J(w) <
(4(M — J(u))/€)||lw —v|. Hence, J is Lipschitz on B, /y(u) with modulus 4(M — J(u))/e.

(ii) Let u € ridom J and n be the dimension of the affine hull of dom J, then 3{a’}H! C
(0,1), {u'}F} C dom J s.t. uw = S0 aful, S al = 1, ie. u belongs to the interior of the
convex hull of {u’}?jll Thus one can apply (i) to assert that J is locally Lipschitz at w. O
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Theorem 1.3. For any proper convex function J : E — R, if u* € dom J is a local minimizer
of J, then it is also a global minimizer.

Proof. By the definition of a local minimizer, 3¢ > 0 s.t. J(u*) < J(u) Yu € Bc(u*). For
the sake of contradiction, assume Ju € E s.t. J(a) < J(u*). By convexity of J, we have
J(au+ (1 — a)u*) < J(u*) —a(J(u*) — J(a)) Yo € [0,1]. This violates the local optimality of
u* as o — 0T, O

Theorem 1.4. Any proper function J : E — R, which is bounded from below, coercive, and
l.s.c., has a (global) minimizer.

Proof. Let {u*} be an infimizing sequence for J, i.e. limy_,o, J(u¥) = inf g J(u) > —o0. Since
{J(u*)} is uniformly bounded from above, by coercivity of J, {u*} is uniformly bounded. By
compactness, u¥ — u* along a subsequence. By ls.c. of J, we have J(u*) < liminfy_,o J(uF) =
inf,eg J(u), which implies J(u*) = inf,cg J(u) or u* is a minimizer of J. O

Theorem 1.5. The minimizer of a strictly conver function J : E — R is unique.

Proof. Let u,v € E be two (global) minimizers s.t. u # v and J(u) = J(v) = J*. By strict
convexity of J, J(au+ (1—a)v) < aJ(u)+ (1 —a)J(v) = J* for all a € (0,1), which contradicts
the global optimality of u and v. O
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