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1 Convex Analysis

Theorem 1.1 (separation of convex sets). Let C1, Cy be nonempty convexr subsets in E such
that C1yNCy = (0 and Cy is open. Then there exists a hyperplane separating C1 and Cs, i.e. v €
E, v#0, a € R such that

<v,u1> >a> <v,u2>, vul € Cy, u? € Cy.

Proof. (i) Claim: Let C' C E be closed, convex set, and w € E\C. Then Jv € E, v #0, o € R
s.t. (v,w) >a > (v,u) YueC.

Consider the projection of w onto C, i.e. set u* := arg min,cc %Hu — w||? or, equivalently,
let (u—u*,u* —w) >0VueC.

Now set v := w — u* # 0. Then Yu € C, we have (v,w) = (w—u*,w) = |[w — u*||* +
(w—u*,u*) > ||lw—u*|? + (w—u*,u) = ||v]|?> + (v,u). Set a := sup{{v,u) : u € C}. Note
a < oo since (v,u) < (v,u*) Yu € C. Thus (v,w) > a > (v,u) Yu € C, which proves the claim.

(ii) Assume Co = {w} with w € C;. Since E\Cj is closed, 3w* € E\C; s.t. w* — w. For
each w¥, by (i), 0¥ € E with [[v¥]| = 1 s.t. (¥, wF) < (v¥,ul) Vu!' € C;. Hence v* — v € E
along a subsequence s.t. ||| =1 and (v, w) < (v,u') Vu' € C1.

(iii) Consider C9 as a general convex subset of E. Set C' := Cy — C; = {u2 —ul sl e
C1, u? € Cy}. Note that C is a convex, open set, and 0 € C. By (i), 30 with v = 1
s.t. <—ﬂ,u2—u1> > (—v,0) = 0 or, equivalently, <6,u1> > <ﬂ,u2> Vul € Cy, u? € Cy. Set
o= sup{<17,u2> : u? € Cy}, then we conclude that <T},u1> >a > <17,u2> Vul € Cp, u? € Cy. O

Theorem 1.2. A proper convex function J : E — R is locally Lipschitz at any u € ridom J.

Proof. (i) Claim: If sup{J(v) : v € Be(u)} < oo for some € > 0, then J is locally Lipschitz at u.

Let M := sup{J(v) : v € B(u)} < oo. By convexity of J, Vv € Bc(u) : J(v) > 2J(u) —
J(2u —v) > 2J(u) — M. Thus, ||J| g (u) := sup{|J(v)| : v € Be(u)} < M + 2|J(u)|.

Next we show J is Lipschitz on Bjy(u). Let v,w € B.js(u) be given. Take z € Bc(u)
st. w = (1 —t)v + tz for some t € [0,1] and ||z — v|| > €/2. By convexity, J(w) — J(v) <
t(J(z)—J(v)) < 2t(M—J(u)). Since t(z—v) = w—v, we have t < |[w—v|/||z—v| < 2|lw—0v]|/e
and J(w) — J(v) < (4(M — J(u))/e)|lw — v||. Analogously, one can show J(v) — J(w) <
(4(M — J(u))/€)||lw —v|. Hence, J is Lipschitz on B, y(u) with modulus 4(M — J(u))/e.

(ii) Let u € ridom J and n be the dimension of the affine hull of dom J, then 3{a’}H! C
(0,1), {u'}} c dom J s.t. uw = S0 adul, S al = 1, ie. u belongs to the interior of the
convex hull of {u’}?jll Thus one can apply (i) to assert that J is locally Lipschitz at w. O
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Theorem 1.3. For any proper convex function J : E — R, if u* € dom J is a local minimizer
of J, then it is also a global minimizer.

Proof. By the definition of a local minimizer, 3¢ > 0 s.t. J(u*) < J(u) Yu € Bc(u*). For
the sake of contradiction, assume Ju € E s.t. J(u) < J(u*). By convexity of J, we have
J(ou+ (1 — a)u*) < J(u*) — a(J(u*) — J(u)) Ya € [0,1]. This violates the local optimality of
u* as a — 0T, O

Theorem 1.4. Any proper function J : E — R, which is bounded from below, coercive, and lsc,
has a (global) minimizer.

Proof. Let {u*} be an infimizing sequence for J, i.e. limg_,o, J(u*) = inf,ecg J(u) > —o0. Since
{J(u*)} is uniformly bounded from above, by coercivity of J, {u¥} is uniformly bounded. By
compactness, u¥ — u* along a subsequence. Since J is Isc, we have J(u*) < liminfy_ o J(u¥) =
inf,eg J(u), which implies J(u*) = inf,eg J(u) or w* is a minimizer of J. O

Theorem 1.5. The minimizer of a strictly convex function J : E — R is unique.

Proof. Let u,v € E be two (global) minimizers s.t. u # v and J(u) = J(v) = J*. By strict
convexity of J, J(au+ (1—a)v) < aJ(u)+ (1—«a)J(v) = J* for all a € (0,1), which contradicts
the global optimality of u and v. O

Theorem 1.6. Let J : E — R be a conver function. Then 0J is a monotone operator, i.e.
Vul,u? € dom J, ¢ € aJ(ul), €2 € 8J(u?):

<€1 o éZ,U,l o U2> > 0.
Proof. By applying the definition of subdifferential at arbitrarily given u',u? € dom J, we have

J(u?) > J(u') + (¢ u? —u'),
J(ub) > J(u?) + (€, ut —u?).

Adding the two inequalities yields <§ Lg2 oyl — u2> > 0. O

Theorem 1.7. Let J : E — R be a convex function. Then for any u € intdomJ, d.J(u) is a
nonempty, compact, and convex subset.

Proof. (i) nonemptiness. Since (u, J(u)) ¢ intepiJ, by Theorem[L.1] 3(¢, —a) € ExRs.t. (£, —a) #
(0,0), @ > 0 by our choice, and ((§, —a), (u — v, J(u) — J(v))) > 0 Vv € dom J. In fact, we must
have a > 0 since otherwise £ = 0. Thus, we conclude that £/a € 0.J(u).

(ii) boundedness. By Theorem|1.2] J is locally Lipschitz at « with modulus L,,. Let £ € 9J (u)
be fixed. For any d € (dom J) —u with ||d|| sufficiently small, we have (¢,d) < J(u+d)—J(u) <
L,||d||. This holds true only if ||£|| < L, which implies boundedness of 9.J(u).

(iii) closedness. Let v € E be fixed and &¥ — &* where each ¢¥ € 9J(u). Then Vk :
J(v) — J(u) > (&*,v — u). By continuity, J(v) — J(u) > (£*,v — u) in the limit. Since v can be
arbitrary, we assert £* € 90J(u).

(iv) convexity. Let v € E be arbitrarily given, £,n € 0J(u). Then we have

J(v) = J(u) + (&0 —u),
J(v) > J(u) + (n,v—u).

Hence, VO <a <1:J(v) > J(u) + (€ + (1 —a)n,v —u), i.e. e + (1 — a)n € 9J (u). O



Theorem 1.8. Let J : E — R be a proper, convez, lsc function. Then 0J is a closed set-valued
map, i.e. & € 0J(u*) whenever

€8y = (u*, €%) € (ridom J) x E s.t. & € aJ(ub) VE.

Proof. Let v € E be fixed. For each k, ¢&¥ € 9J(u*) = J(v) > J(uF) 4+ (¢¥,v — u*). Passing
k — oo, we have (¢¥, v —u*) — (¢*,v —u*) and J(u*) < liminfj_,o J(u¥). Hence, J(u*) +
(€%, v —u*) < liminfr oo {J(u¥) + (€*,v — uF)} < J(v). Since v can be arbitrary, £* € 9.J(u*).

0

Theorem 1.9. Given any proper convex function J : E — R, the sufficient and necessary
condition for u* being a (global) minimizer for J is: 0 € 9J(u*).

Proof. (i) sufficiency. 0 € 0J(u*) = J(u) > J(u*) + (0,u — u*) = J(u*) Vu € E.
(ii) necessity. J(u*) < J(u) Vu € E = J(u*)+ (0,u —u*) < J(u) Yu = 0€dJ(u*). O

Theorem 1.10 (Fenchel-Young inequality). For all w € dom J, p € dom J*, we have J(u) +
J*(p) > (u,p). The equality holds iff p € 0J(u).

Proof. J(u)+ J*(p) > (u,p) follows directly from the definition of convex conjugate; p € 9.J (u)

is the sufficient and necessary condition for: w = argmin,cg J(v) — (v, p). O
Theorem 1.11. Assume J : E — R and J** = (J*)* is the biconjugate of J. In general:

1 () < J0).

2. J* is convex and lsc.
If J is proper, convex, and lsc, then:

3. () =J().

4. p€dJ(u) iff u e dJ*(p).

Proof. (1) Since J**(u) = sup,, (p,u) — J*(p) and (p,u) — J*(p) < J(u) by Theorem we
assert J* () < J(+).

(2) (i) convexity. Let p,qg € E, 0 < a < 1. Then J*(ap+(1—a)q) = sup,{(u,ap + (1 — a)q)—
J(u)} < sup,{{aw, p) — a ()} + sup, (1 — a)u,q) — (1 — )T ()} = aJ*(p) + (1 — a).T*(q).

(ii) 1sc. Note epiJ* = {(p,a) € Ex R : (u,p) — J(u) < a Yu} = N, epi ®,, where P, (-
(u,-) — J(u). Since each epi ®, and any arbitrary intersection of closed sets is closed, epi J* is
closed and hence J* is Isc.

(3) For the sake of contradiction, assume Ju € domJ** s.t. J(u) > J**(u). Let d :=
2(J(w) — J**(w)) > 0. Since (a4, J(a) —d) ¢ epiJ and epiJ is closed, by Theorem A(p,—1) €
ExRs.t. ((p,—1),(u,J(a)—d)) > (&, 1), (u,®)) Y(u,a) € epiJ. In particular, (p, u)—J(a)+
d > (p,u) — J(u) Vu. Hence, (p,u) — J(a)+d > J*(p) > (p,u) — J**(u) by Theorem [L.10] Thus
we have J**(u) > J(u) as a contradiction to our assumption.

(4)pedJ(u) & J(u)+J*(p)=(u,p) & J"(w)+J(p)=(uv,p & uwecdJ(p). O

)

% —

Theorem 1.12. Assume that J : E — R is proper, convex, and Isc. Then J is p-strongly convex
iff J* has %—Lipschitz gradient.



Proof. Let p € 0J(u) be arbitrarily given. By p-strong convexity of J, we have
J(0) 2 T(w) + (v —u) + Sl —ul? V. ()

Then Vg : J*(q) = sup,{(g,v) — J(v)} < sup, +{(g,v) = J(u) = (p,v — u) = §llv—u[?*} = (g, u) —
J(u)+sup,{{q — p,v —u) = Glv—ul*} = (g, w) = J(w) + 55 la—pl* = (p,u) — T (u) +{q — p,u) +
in —p||?> = J*(p) (g — p,u) + ﬁ”q —p||?. Here we have used the identity (p,u) —J(u) = J*(p).
We have actually derived lim,, [|J*(q) — J*(p) — (¢ — p,w) ||/|l¢ — p|| = 0, which asserts that
J* is (Frechét-)differentiable at p with V.J*(p) = u.

Finally we show V.J* is i-Lipschitz. Let u = V.J*(p), v = V.J*(q), or equivalently p €
0J(u), g € 0J(v). Then by (1) we have

J(©) 2 J() + (v —u) + Sl —ul
J(w) = T(0) + (g.u—v) + £ llu— vl

Adding the above two inequalities, we obtain ullu — v||*> < (p —q,u —v) < ||p — ql|||u — v|| and
thus [Ju — v]] < Llp — q]. 0

Theorem 1.13 (Fenchel-Rockafellar duality). Assume Ju € dom G s.t. F' is continuous at Ku.
Then the strong duality holds: P* = D*. Moreover, (u*,p*) is the optimal solution pair iff

Ku* € 0F*(p*),
—KTp* € 0G(u*).

Proof. Define ®(-) := inf, {F(Ku + -) + G(u)}. Since Yov!,v?> € R™, Va € [0,1] : a®(v!) +
(1 —a)®(v?) = inf {aF (Ku! +vY) + aG(ul)} +inf 2 {(1 — @) F(Ku? +v?) + (1 — a)G(u?)} =
inf,1 2 {aF(Ku' +v') + (1 — @) F(Ku® + v?) + aG(u') + (1 — )G (u?)} > inf {aF(Ku+v') +
(1—a)F(Ku+v?) +G(u)} > inf {F(Ku+avt + (1 —a)v?) + G(u)} = ®(av! + (1 — a)v?), we
prove that @ is a convex function.

Without loss of generality, assume ®(0) > —oo. By our assumption, Je > 0 s.t. V||v|| < €:
¢(v) < F(Ku+v)+G(u) < M for some M < co. Hence, by Theorem |1.2 ® is locally Lipschitz
at 0, and ®(0) = ®**(0) = sup,, —®*(p), where ®*(p) = sup,{(p, v) —inf, {F(Ku+v)+G(u)}} =
sup, , {(p,v + Ku) + (=K "p,u) — F(Ku+v) — G(u)} = F*(p) + G*(—K "p). Thus, P* = D* is
proven.

As for the optimality condition, note that V(u,p) : G(u, p) = F(Ku) + G(u) + G*(—K "p) +
F*(p) = F(Ku) + F*(p) — (Ku,p) + G(u) + G*(—K "p) — (=K "p,u) > 0. The equality holds,
ie. G(u*,p*) =0, iff Ku* € OF*(p*) and —K "p* € G (u*) according to Theoremm O

Theorem 1.14 (Moreau identity). Let 7 > 0 and J : E — R be proper, convez, and Isc. Then
the following identity holds:

id(-) = prox, () + 7 proxy . (-/7).
Proof. v = Tprox%J*(u/T) s (I+ %&]*)_1 (u/T) 3 v/T & OJ*(v/T) DS u—v & V/TE
dJ(u—v) & u—v=(I+79J)  (u) = prox,;(u). O
Theorem 1.15. Let F,G : E — R be proper, conver, and lsc. Then

(FOG)* (1) = F*(-) + G* ()

Proof. Vp € E: (FDG)*(p) = Supu,v{<pa u)—F(v)—G(u—v)} = Supu,v{<pav>_F(v)+<pvu - U>_
G(u—v)} = F*(p) + G*(p). -



2 Optimization Algorithms

Theorem 2.1. If (VJ(u*),d") <0, then J(u" + 7d*) < J(u*) for all sufficiently small T > 0.

Proof. The conclusion follows directly from the Taylor expansion: J(u* + 7d*) = J(u*) +
T(VJI(WF),d*) + o(r) = J(uF) + 7 ((VJI(uF),d") + 0o(1)) < J(uF), for all 7 > 0 sufficiently
small. O

Lemma 2.2 (feasibility of line search). Assume that J : E — R is continuously differentiable,
<VJ(uk), dk> < O0VEk, and 0 < c; < ca < 1. Then there exists an open interval in which the step
size T satisfies the Armijo- and the curvature conditions.

Proof Consider o(1) == J(uF + 7d*) and (1) = J(u*) + 7¢1 (VJI(uF),d¥) for 7 > 0. Since
¢'(0) = (VJ(u),dF) < ¢'(0), ¢(1) < ¥(7) for all 7 > 0 sufficiently close to 0. On the other
hand o(-) is bounded from below but ¢(-) is not. Hence, ¢ and v intersect at 7 = 7/ > 0 (for
the first time as 7 increases from 0). Thus, 0 < 7 < 7/ fulfills the Armijo condition.

By the mean Value theorem, 37" € (0,7') s.t. J(u +7'd") — J(uF) = 7/ (VI (uF + 7dF), d¥) .
This 1mphes <VJ uk 4 7" db), dk> = ¢ <VJ dk> > e <VJ(uk),dk> since ¢; < cg and
(VJ(u),d*) < 0. By continuity, this inequality holds in a neighborhood of 7”. O

Theorem 2.3 (Zoutendijk). Assume that J : E — R is continuously differentiable, and the
Armijo- and the curvature conditions are both satisfied with 0 < ¢; < cg < 1 for each k. In

L . 0 oo [(VIh)d)
addition, VJ(-) is p-Lipschitz on {u € E : J(u) < J(u’)}. Then we have ) ;- S FE
0.

<
Proof. From the curvature condition, we have <VJ( M) — VI (W), dF) > (ea—1) (VI (uF), dF).
Since VJ is p-Lipschitz, <VJ(uk+1) VJ(uF),d"y < tFp||d¥||?.  Altogether we have Tk >
c2— u”),d* c1(1—c u®),d*) |
(&2 1)5||Vdi|(|2 ) > Using the Armijo condition, we have J(u**1) < J(uF) — 0 2)L<HZ’;1\(2 24|

. . . o [(VI(u)d*)|?
Summing up this inequality from k£ = 0 to oo, we have ) ;" SaEE s <% O

Lemma 2.4. Assume J : [E — R is convex with u-Lipschitz gradient. Then Yu,v € E :

7(0) = I () = (VI (), v = u) [ < S v —ul®.

Proof. Since J(v) = J(u) fo (VJ(u+t(v—u)),v—uydt = J(u) + (VJ(u),v — u)
—I—fo (VJ(u+t(v—u)) — VJ(u),v — u)dt, we have |J(v) — J(u) — (VJ(u),v — u) |
(fo Vi (u+ tv —u)) — VJ(u), v — u) dt‘ < LV Ho — w) = VT (u),v — u) |dt
< Jo IVI @+t —w) = VI (@)||llv = ulldt < [ tulo — u|2dt = §]jv = u]|?. O
Theorem 2.5 (convergence of gradient descent). Assume J : E — R is convex with p-Lipschitz

gradient. Then the gradient descent iteration uF™! = u* — 7V J(u*) with 7 € (0,1/p] yields
limy_,oo VJ(u*) = 0.

Proof. First, note that J(u**!) < J(u¥) Vk. Since J has a (finite) minimum by assumption,

limy_oo |J(uFt1) — J(u¥)] = 0. Due to the majorization property and p < 1/7, we have
Tk < J(k) + (VI (ub), ub+l — uk) 4 Lkl — ok )2 = J(uF) — L[ub+ — w2, Hence,
we conclude [|[VJ(u)|| = L[|uf+! — u¥|| — 0. 0



Proposition 2.6. Let C be a nonempty, closed, convex subset of E, ® : C' — E, and a € (0,1).
Then the following statements are equivalent:

1. ® is a-averaged.

2. (1 -1+ 1@ is nonezpansive.

3. Yu,v € O () — @(v)|* < [lu—v]? = 22T — @)(u) — (I — @) (v)|*

4. Yu,v € C 2 ||®(u) — ()12 + (1 — 2a)||u —v||?> <2(1 — a) (u — v, ®(u) — ®(v)).

Proof. By the definition of the averaged operator, ® = (1 — a)I + a¥ for some nonexpansive
operator ¥ : C —» E, or ¥ = (1 — 1)1 + 1&. Hence, (1) & (2) follows.

(2) © U = (1—2)I+ 1 is nonexpansive < || ¥ (u) — ¥ (v)|| < [lu—v| < o?lu—v|? > ||((a—
DB~ #0)? = 19000 —BO+ = vl 42D =0, 906) ~9(0)
= .

Note that 2 (u — v, ®(u) — ®(v)) = [|(I = ®)(u) — (I = @)(v)||* — [lu —v[* — [|®(u) — P(v)|>.
Hence, (4) < [(u) — D(0)] + (1 — 20) Ju — v]® < (1 - a)|(I — ®)(w) — (I — B)(w)||* — (1 -
a)u—v[? = (1 - a)[|®(u) — 2(v)[* & (3). O

Theorem 2.7 (Baillon-Haddad). Let J : E — R be a convex, continuously differentiable func-
tion. Then V.J is a nonexpansive operator iff VJ is firmly nonexpansive.

Proof. (if) Obvious.

(only if) Define H(-) := 3| - ||> — J(-). Note that H is continuously differentiable and
VH =1 — VJ. Since VJ is nonexpansive, we have Yu,v : (VH(v) — VH(u),v —u) > |jv —
all(Jo — ull ~ [V (o) - VI@)) > 0.

This implies Vu,v : H(v)—H(u) = fol (VH(u+t(v —u)),v — u)dt > fol (VH(u),v —u)dt =
(VH(u),v — u). Furthermore, H(v) > H(u)+(VH(u),v —u) = 3||v|> = J(v) > $||ul[*—J(u)+
(= VT, 0~ u) = J(0) — I(a) — (VI @)v — 0} < Sl = }ulP + (uyw — v) = 3o — ]

Define Dj(w,u) := J(w) — J(u) — (VJ(u),w — u),Yw,u € E. The above result says 1|jw —
ul|? > Dj(w,u),Yw,u. Fix u temporarily and let d(-) = Dj(-,u). Then d is convex, d(-) > 0,
Vd(:) = VJ(-) = VJ(u), and D;(-,u) = Dg(-,u). Therefore, we have |w — v|*> > Dg(w,v) =
d(w)—d(v)—(Vd(v),w — v) = d(w)—d(v)—(VJ(v) = VJ(u),w —v).Set w = v—VJ(v)+VJ(u),
then we have D;(v,u) = d(v) > d(w) + 5[|VJ(v) — VJ(W)[|> > 5| VJI(v) — VJ(u)|%

Analogously, we can show D j(u,v) > 3[|VJ(u)—VJ(v)||>. Hence, (VJ(v) — VJ(u),v — u) =
Dj(u,v)+Dy(v,u) > ||VJ(v) = VJ(u)||? and VJ is firmly nonexpansive by Proposition O

Corollary 2.8. Assume that G : E — R is a convex, differentiable function with u-Lipschitz
VG, 7 =2a/u, and a € (0,1), then I — 7VG is a-averaged.

Proof. Since iVG is nonexpansive, by the Baillon-Haddad theorem, iVG is firmly nonexpan-

sive, i.e. 3V : E — [E nonexpansive s.t. iVG = %I—i— %\I/ Hence, I —7VG = (1 - 55 — ¥ =

(I—a)l+a(—-¥),ie I —7VG is a-averaged. O

Theorem 2.9 (composition of averaged operators). Let C' be a nonempty, closed, convez subset
of E. For each i€ {1,...,m}, let o; € (0,1) and ®; : C — E be an «a;-averaged operator. Then

d=0,,0..0P

1 a-averaged with

o=

1

m—14+—
maxlgigm (67
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Proof. Let k; := «;/(1 — a;) for each i, and k := max; k;. For arbitrarily fixed u,v € C, we
derive

I(T = ®)(w) = (I = @)(v)|I*/m
=1 = ®1)(w) = (I = @1)(v) + [(I = @) 0 P1](u) — [(I — P2) 0 Py](v) +
+ (I = ®m) 0Py 0...0@1](u) = [(I — ®) 0 Py 0... 0 @1)](v)]|*/m

<[(I = ®1)(u) = (I = @) ()[I* + [|[(L = D2) 0 @1](u) — [(I = @2) 0 1] (v)|* + ...

+ [[(T = @) © P10 ... 0 By] (1) — [(I — Bpp) 0 Ppy_q 0... 0 By)](w)]|?
< w1(flu— vl = [[@1(u) = @1(v)[*) + K[| @1 (u) — P1(0)]|* — [[[@2 0 P1](u) — [@2 0 P1](v)])

+ oo ([ @1 0. 0 @] (1) — [@1rq 0 ... 0 D] (V) ||? = ||[ @ © ... 0 P1](w) — [®y © ... 0 P1]()]|?
<l —olf? — () — (o)),
Since (1) < (3) in Proposition ® is a-averaged with 12 = L or equivalently o =
TERy O
k1 _

Theorem 2.10 (Krasnoselskii). Let C' be a nonempty, closed, convexr subset of E, and u
®(uF) for k =0,1,2,... where ® : C — C satisfies:

1. ® is a-averaged for some o € (0,1).
2. ® has at least one fixed point.
Then {u*} converges to a fized point of ®.

Proof. Let u € C be an arbitrary fixed point of ®. Since ® is a-averaged, we have Vk :
[t —al? = [ @(u*) - 2(@)|* < |Ju* —a* - 2T - ) (u*) — (I - @)(@)|* = [lu* —al® -
=2|(] — ®)(u*)||?. Summing up this inequality for all indices in I € [0, k], we have

k

_ _ l—«
[ —al* < |u® —ul? - - DT = @)(uh]>.

=0

This yields: (i) [[u* — ] ¢ > 0; (i) T2 (I — @)(uh) 2 < oo.

By (i), {uk} is uniformly bounded. Let {u*'} be any Convergent subsequence of {u*} s.t. u* =
limy oo u¥ € C. By (ii), ||(I — ®)(uw*)|| = limp_uo ||(I — ®)(u*)|| = 0, i.e. u* is a fixed point of
.

Finally, we show the limit u* is unique for any convergent subsequence of {u*}. Assume that
another subsequence of {u*}, say {u*"}, converges to u** € C. Then both lim_,o ||uf — u*||?
and limy_,o [[u® — w**||? exist, and therefore 2 (uF,u** —u*) = [ju¥ — w*||? — [Juf — w**| —
lu*||? + [|[u**||* = ¢ € R. Passing k — oo along subindices {k’} and {k"} respectively, we have
2 (u*, u™ — u*) = 2 (u*, u** —u*) = ¢ and hence ||u* — u**||> = 0. Thus, we have shown that
limy_y oo uF = u*. O

Theorem 2.11 (Krasnoselskii-Mann). Let C' be a nonempty, closed, convex subset of E, and
uF = (1 — 79)ub + 780 (uF) for k =0,1,2,... where {7%} C [0,1] s.t.

iTk(l — Tk) =
k=0

and ¥ : C' — C satisfies:



1. ¥ s nonexpansive.
2. VU has at least one fized point.
Then {u*} converges to a fized point of V.

Proof. Let % € C be an arbitrary fixed point of ¥. Then Vk : ||[u**! — a2 = ||(1 — 7F)(u* —
@) + THW(R) — D)2 = (1— mh) k= a2 + D) — al — (1 — T D) — oF? <
|u¥ — a0 — 75 (1 — 7%) || ¥ (u¥) — »¥||%. Summing up this inequality for all indices in [ € [0, k], we
have

k
= al® <’ —al® = Y= I - ).
=0

This yields: (i) [Ju* — al| \y ¢ > 0; (i) 52, 78 (1 — 77)[|(I — ¥) (u¥)||? < oo.
(ii) further implies lim infy o ||(I — ¥)(u¥)|| = 0. Otherwise 3k € N, € > 0, s.t. Vk > k :
I(Z — ®)(u")|| > €, and hence oo > 3702, 7H(1 = M)||(1 — W) (uM)|* = 325 (1 — 75)|(1 —

) (uF) |2 > 7% (1 — 7%) = 0o. Moreover, ||(1I — U)(u )| = [|(1 — 7%)(uF — T (uF)) + (T (u¥) —

T < (1 — 79|k — UWh)|| + [|uf Tt — uF]| = ||[(I — )(u*)||. Altogether, we obtain
lim o (7 — W) (u)] = 0.
The remainder of the proof is identical to that for Theorem [2.10} O

Lemma 2.12 (demiclosedness principle). Let C' be a nonempty, closed, convex subset of a real
Hilbert space H, and ® : C — H be nonexpansive. For any sequence {u*} C C s.t. {u*} weakly
converges to u(€ C) and u* — ®(u”) strongly converges to v € H, we have u — ®(u) = v.

Proof. Since {u*} weakly converges to u* and C is weakly closed (for being convex and strongly
closed), we have u € C' and ®(u) is well defined. By the nonexpansiveness of ®, we derive

Ju = @) = vl = ut = D(u) = ]2 = ut - ul]? = 2 (u* — u,u— D(u) — v)

= [l = @(uF) = v]]2 + 2 (uF — D(uF) — v, @(ut) — B(w)) + [D(F) = Du)|2 ~ [ u]]
—2<uk—u,u—<1>(u)—v>

< |luk — ®(uF) — v||? + 2 <uk ~ (k) — v, (k) — <I>(u)> 9 <uk g — Bu) — U> )

Note that, in the last inequality above, ®(u*) — ®(u) = (®*(uF) — u¥ +v) + (uF — ®(u) — v)
weakly converges to u — ®(u) — v. O
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