Proofs in SS'17 Convex Optimization Lectures*

Last updated: June 28, 2017

1 Convex Analysis

Theorem 1.1 (separation of convex sets). Let C_1 , C_2 be nonempty convex subsets in \mathbb{E} such that $C_1 \cap C_2 = \emptyset$ and C_1 is open. Then there exists a hyperplane separating C_1 and C_2 , i.e. $\exists v \in \mathbb{E}$, $v \neq 0$, $\alpha \in \mathbb{R}$ such that

$$\langle v, u^1 \rangle \ge \alpha \ge \langle v, u^2 \rangle, \quad \forall u^1 \in C_1, \ u^2 \in C_2.$$

Proof. (i) Claim: Let $C \subset \mathbb{E}$ be closed, convex set, and $w \in \mathbb{E} \setminus C$. Then $\exists v \in \mathbb{E}, \ v \neq 0, \ \alpha \in \mathbb{R}$ s.t. $\langle v, w \rangle > \alpha \geq \langle v, u \rangle \ \forall u \in C$.

Consider the projection of w onto C, i.e. set $u^* := \arg\min_{u \in C} \frac{1}{2} ||u - w||^2$ or, equivalently, let $\langle u - u^*, u^* - w \rangle \ge 0 \ \forall u \in C$.

Now set $v := w - u^* \neq 0$. Then $\forall u \in C$, we have $\langle v, w \rangle = \langle w - u^*, w \rangle = \|w - u^*\|^2 + \langle w - u^*, u^* \rangle \geq \|w - u^*\|^2 + \langle w - u^*, u \rangle = \|v\|^2 + \langle v, u \rangle$. Set $\alpha := \sup\{\langle v, u \rangle : u \in C\}$. Note $\alpha < \infty$ since $\langle v, u \rangle \leq \langle v, u^* \rangle \ \forall u \in C$. Thus $\langle v, w \rangle > \alpha \geq \langle v, u \rangle \ \forall u \in C$, which proves the claim.

- (ii) Assume $C_2 = \{\bar{w}\}$ with $\bar{w} \in C_1$. Since $\mathbb{E} \setminus C_1$ is closed, $\exists w^k \in \mathbb{E} \setminus C_1$ s.t. $w^k \to \bar{w}$. For each w^k , by (i), $\exists v^k \in \mathbb{E}$ with $||v^k|| \equiv 1$ s.t. $\langle v^k, w^k \rangle \leq \langle v^k, u^1 \rangle \ \forall u^1 \in C_1$. Hence $v^k \to \bar{v} \in \mathbb{E}$ along a subsequence s.t. $||\bar{v}|| = 1$ and $\langle \bar{v}, \bar{w} \rangle \leq \langle \bar{v}, u^1 \rangle \ \forall u^1 \in C_1$.
- (iii) Consider C_2 as a general convex subset of \mathbb{E} . Set $C := C_2 C_1 = \{u^2 u^1 : u^1 \in C_1, u^2 \in C_2\}$. Note that C is a convex, open set, and $0 \in C$. By (ii), $\exists \bar{v}$ with $\bar{v} = 1$ s.t. $\langle -\bar{v}, u^2 u^1 \rangle \geq \langle -\bar{v}, 0 \rangle = 0$ or, equivalently, $\langle \bar{v}, u^1 \rangle \geq \langle \bar{v}, u^2 \rangle \ \forall u^1 \in C_1, u^2 \in C_2$. Set $\alpha := \sup\{\langle \bar{v}, u^2 \rangle : u^2 \in C_2\}$, then we conclude that $\langle \bar{v}, u^1 \rangle \geq \alpha \geq \langle \bar{v}, u^2 \rangle \ \forall u^1 \in C_1, u^2 \in C_2$. \square

Theorem 1.2. A proper convex function $J : \mathbb{E} \to \overline{\mathbb{R}}$ is locally Lipschitz at any $u \in \operatorname{ridom} J$.

Proof. (i) Claim: If $\sup\{J(v): v \in B_{\epsilon}(u)\} < \infty$ for some $\epsilon > 0$, then J is locally Lipschitz at u. Let $M := \sup\{J(v): v \in B_{\epsilon}(u)\} < \infty$. By convexity of J, $\forall v \in B_{\epsilon}(u): J(v) \geq 2J(u) - J(2u - v) \geq 2J(u) - M$. Thus, $\|J\|_{B_{\epsilon}(u)} := \sup\{|J(v)|: v \in B_{\epsilon}(u)\} \leq M + 2|J(u)|$.

Next we show J is Lipschitz on $B_{\epsilon/2}(u)$. Let $v, w \in B_{\epsilon/2}(u)$ be given. Take $z \in B_{\epsilon}(u)$ s.t. w = (1-t)v + tz for some $t \in [0,1]$ and $||z-v|| \ge \epsilon/2$. By convexity, $J(w) - J(v) \le t(J(z) - J(v)) \le 2t(M - J(u))$. Since t(z-v) = w - v, we have $t \le ||w-v||/||z-v|| \le 2||w-v||/\epsilon$ and $J(w) - J(v) \le (4(M - J(u))/\epsilon)||w-v||$. Analogously, one can show $J(v) - J(w) \le (4(M - J(u))/\epsilon)||w-v||$. Hence, J is Lipschitz on $B_{\epsilon/2}(u)$ with modulus $4(M - J(u))/\epsilon$.

(ii) Let $u \in \operatorname{ridom} J$ and n be the dimension of the affine hull of $\operatorname{dom} J$, then $\exists \{\alpha^i\}_{i=1}^{n+1} \subset (0,1), \{u^i\}_{i=1}^{n+1} \subset \operatorname{dom} J$ s.t. $u = \sum_{i=1}^{n+1} \alpha^i u^i, \sum_{i=1}^{n+1} \alpha^i = 1$, i.e. u belongs to the interior of the convex hull of $\{u^i\}_{i=1}^{n+1}$. Thus one can apply (i) to assert that J is locally Lipschitz at u. \square

^{*}Please report typos to: tao.wu@tum.de

Theorem 1.3. For any proper convex function $J : \mathbb{E} \to \overline{\mathbb{R}}$, if $u^* \in \text{dom } J$ is a local minimizer of J, then it is also a global minimizer.

Proof. By the definition of a local minimizer, $\exists \epsilon > 0$ s.t. $J(u^*) \leq J(u) \ \forall u \in B_{\epsilon}(u^*)$. For the sake of contradiction, assume $\exists \bar{u} \in \mathbb{E}$ s.t. $J(\bar{u}) < J(u^*)$. By convexity of J, we have $J(\alpha \bar{u} + (1 - \alpha)u^*) \leq J(u^*) - \alpha(J(u^*) - J(\bar{u})) \ \forall \alpha \in [0, 1]$. This violates the local optimality of u^* as $\alpha \to 0^+$.

Theorem 1.4. Any proper function $J : \mathbb{E} \to \overline{\mathbb{R}}$, which is bounded from below, coercive, and lsc, has a (global) minimizer.

Proof. Let $\{u^k\}$ be an infimizing sequence for J, i.e. $\lim_{k\to\infty}J(u^k)=\inf_{u\in\mathbb{E}}J(u)>-\infty$. Since $\{J(u^k)\}$ is uniformly bounded from above, by coercivity of J, $\{u^k\}$ is uniformly bounded. By compactness, $u^k\to u^*$ along a subsequence. Since J is lsc, we have $J(u^*)\leq \liminf_{k\to\infty}J(u^k)=\inf_{u\in\mathbb{E}}J(u)$, which implies $J(u^*)=\inf_{u\in\mathbb{E}}J(u)$ or u^* is a minimizer of J.

Theorem 1.5. The minimizer of a strictly convex function $J: \mathbb{E} \to \overline{\mathbb{R}}$ is unique.

Proof. Let $u, v \in \mathbb{E}$ be two (global) minimizers s.t. $u \neq v$ and $J(u) = J(v) = J^*$. By strict convexity of J, $J(\alpha u + (1 - \alpha)v) < \alpha J(u) + (1 - \alpha)J(v) = J^*$ for all $\alpha \in (0, 1)$, which contradicts the global optimality of u and v.

Theorem 1.6. Let $J: \mathbb{E} \to \overline{\mathbb{R}}$ be a convex function. Then ∂J is a monotone operator, i.e. $\forall u^1, u^2 \in \text{dom } J$, $\xi^1 \in \partial J(u^1)$, $\xi^2 \in \partial J(u^2)$:

$$\langle \xi^1 - \xi^2, u^1 - u^2 \rangle \ge 0.$$

Proof. By applying the definition of subdifferential at arbitrarily given $u^1, u^2 \in \text{dom } J$, we have

$$J(u^2) \ge J(u^1) + \langle \xi^1, u^2 - u^1 \rangle,$$

 $J(u^1) \ge J(u^2) + \langle \xi^2, u^1 - u^2 \rangle.$

Adding the two inequalities yields $\langle \xi^1 - \xi^2, u^1 - u^2 \rangle \ge 0$.

Theorem 1.7. Let $J: \mathbb{E} \to \overline{\mathbb{R}}$ be a convex function. Then for any $u \in \operatorname{int} \operatorname{dom} J$, $\partial J(u)$ is a nonempty, compact, and convex subset.

Proof. (i) nonemptiness. Since $(u, J(u)) \notin \text{int epi } J$, by Theorem 1.1, $\exists (\xi, -\alpha) \in \mathbb{E} \times \mathbb{R} \text{ s.t. } (\xi, -\alpha) \neq (0, 0), \alpha \geq 0$ by our choice, and $\langle (\xi, -\alpha), (u - v, J(u) - J(v)) \rangle \geq 0 \ \forall v \in \text{dom } J$. In fact, we must have $\alpha > 0$ since otherwise $\xi = 0$. Thus, we conclude that $\xi/\alpha \in \partial J(u)$.

- (ii) boundedness. By Theorem 1.2, J is locally Lipschitz at u with modulus L_u . Let $\xi \in \partial J(u)$ be fixed. For any $d \in (\text{dom } J) u$ with ||d|| sufficiently small, we have $\langle \xi, d \rangle \leq J(u+d) J(u) \leq L_u ||d||$. This holds true only if $||\xi|| \leq L_u$, which implies boundedness of $\partial J(u)$.
- (iii) closedness. Let $v \in \mathbb{E}$ be fixed and $\xi^k \to \xi^*$ where each $\xi^k \in \partial J(u)$. Then $\forall k : J(v) J(u) \ge \langle \xi^k, v u \rangle$. By continuity, $J(v) J(u) \ge \langle \xi^*, v u \rangle$ in the limit. Since v can be arbitrary, we assert $\xi^* \in \partial J(u)$.
 - (iv) convexity. Let $v \in \mathbb{E}$ be arbitrarily given, $\xi, \eta \in \partial J(u)$. Then we have

$$J(v) \ge J(u) + \langle \xi, v - u \rangle,$$

$$J(v) \ge J(u) + \langle \eta, v - u \rangle.$$

Hence, $\forall 0 \leq \alpha \leq 1 : J(v) \geq J(u) + \langle \alpha \xi + (1 - \alpha) \eta, v - u \rangle$, i.e. $\alpha \xi + (1 - \alpha) \eta \in \partial J(u)$.

Theorem 1.8. Let $J : \mathbb{E} \to \overline{\mathbb{R}}$ be a proper, convex, lsc function. Then ∂J is a closed set-valued map, i.e. $\xi^* \in \partial J(u^*)$ whenever

$$\exists (u^k, \xi^k) \to (u^*, \xi^*) \in (\text{ri dom } J) \times \mathbb{E} \text{ s.t. } \xi^k \in \partial J(u^k) \ \forall k.$$

Proof. Let $v \in \mathbb{E}$ be fixed. For each $k, \xi^k \in \partial J(u^k) \Rightarrow J(v) \geq J(u^k) + \langle \xi^k, v - u^k \rangle$. Passing $k \to \infty$, we have $\langle \xi^k, v - u^k \rangle \to \langle \xi^k, v - u^k \rangle$ and $J(u^*) \leq \liminf_{k \to \infty} J(u^k)$. Hence, $J(u^*) + \langle \xi^k, v - u^k \rangle \leq \liminf_{k \to \infty} \{J(u^k) + \langle \xi^k, v - u^k \rangle\} \leq J(v)$. Since v can be arbitrary, $\xi^* \in \partial J(u^*)$.

Theorem 1.9. Given any proper convex function $J: \mathbb{E} \to \overline{\mathbb{R}}$, the sufficient and necessary condition for u^* being a (global) minimizer for J is: $0 \in \partial J(u^*)$.

Proof. (i) sufficiency.
$$0 \in \partial J(u^*) \Rightarrow J(u) \geq J(u^*) + \langle 0, u - u^* \rangle = J(u^*) \ \forall u \in \mathbb{E}$$
. (ii) necessity. $J(u^*) \leq J(u) \ \forall u \in \mathbb{E} \Rightarrow J(u^*) + \langle 0, u - u^* \rangle \leq J(u) \ \forall u \Rightarrow 0 \in \partial J(u^*)$.

Theorem 1.10 (Fenchel-Young inequality). For all $u \in \text{dom } J$, $p \in \text{dom } J^*$, we have $J(u) + J^*(p) \ge \langle u, p \rangle$. The equality holds iff $p \in \partial J(u)$.

Proof. $J(u) + J^*(p) \ge \langle u, p \rangle$ follows directly from the definition of convex conjugate; $p \in \partial J(u)$ is the sufficient and necessary condition for: $u = \arg\min_{v \in \mathbb{E}} J(v) - \langle v, p \rangle$.

Theorem 1.11. Assume $J: \mathbb{E} \to \overline{\mathbb{R}}$ and $J^{**} = (J^*)^*$ is the biconjugate of J. In general:

- 1. $J^{**}(\cdot) \leq J(\cdot)$.
- 2. J^* is convex and lsc.

If J is proper, convex, and lsc, then:

- 3. $J^{**}(\cdot) = J(\cdot)$.
- 4. $p \in \partial J(u)$ iff $u \in \partial J^*(p)$.

Proof. (1) Since $J^{**}(u) = \sup_p \langle p, u \rangle - J^*(p)$ and $\langle p, u \rangle - J^*(p) \leq J(u)$ by Theorem 1.10, we assert $J^{**}(\cdot) \leq J(\cdot)$.

- (2) (i) convexity. Let $p, q \in \mathbb{E}$, $0 \le \alpha \le 1$. Then $J^*(\alpha p + (1-\alpha)q) = \sup_u \{\langle u, \alpha p + (1-\alpha)q \rangle J(u)\} \le \sup_u \{\langle \alpha u, p \rangle \alpha J(u)\} + \sup_u \{\langle (1-\alpha)u, q \rangle (1-\alpha)J(u)\} = \alpha J^*(p) + (1-\alpha)J^*(q)$.
- (ii) lsc. Note epi $J^* = \{(p, \alpha) \in \mathbb{E} \times \mathbb{R} : \langle u, p \rangle J(u) \leq \alpha \ \forall u\} = \cap_u \text{ epi } \Phi_u \text{ where } \Phi_u(\cdot) = \langle u, \cdot \rangle J(u)$. Since each epi Φ_u and any arbitrary intersection of closed sets is closed, epi J^* is closed and hence J^* is lsc.
- (3) For the sake of contradiction, assume $\exists \bar{u} \in \text{dom } J^{**} \text{ s.t. } J(\bar{u}) > J^{**}(\bar{u})$. Let $d := \frac{1}{2}(J(\bar{u}) J^{**}(\bar{u})) > 0$. Since $(\bar{u}, J(\bar{u}) d) \notin \text{epi } J$ and epi J is closed, by Theorem 1.1, $\exists (\bar{p}, -1) \in \mathbb{E} \times \mathbb{R} \text{ s.t. } \langle (\bar{p}, -1), (\bar{u}, J(\bar{u}) d) \rangle \geq \langle (\xi, -1), (u, \alpha) \rangle \ \forall (u, \alpha) \in \text{epi } J$. In particular, $\langle \bar{p}, \bar{u} \rangle J(\bar{u}) + d \geq \langle \bar{p}, u \rangle J(u) \ \forall u$. Hence, $\langle \bar{p}, \bar{u} \rangle J(\bar{u}) + d \geq J^*(\bar{p}) \geq \langle \bar{p}, \bar{u} \rangle J^{**}(\bar{u})$ by Theorem 1.10. Thus we have $J^{**}(\bar{u}) \geq J(\bar{u})$ as a contradiction to our assumption.

$$(4) \ p \in \partial J(u) \ \Leftrightarrow \ J(u) + J^*(p) = \langle u, p \rangle \ \Leftrightarrow \ J^{**}(u) + J^*(p) = \langle u, p \rangle \ \Leftrightarrow \ u \in \partial J^*(p).$$

Theorem 1.12. Assume that $J: \mathbb{E} \to \overline{\mathbb{R}}$ is proper, convex, and lsc. Then J is μ -strongly convex iff J^* has $\frac{1}{\mu}$ -Lipschitz gradient.

Proof. Let $p \in \partial J(u)$ be arbitrarily given. By μ -strong convexity of J, we have

$$J(v) \ge J(u) + \langle p, v - u \rangle + \frac{\mu}{2} \|v - u\|^2 \quad \forall v.$$
 (1)

Then $\forall q: J^*(q) = \sup_v \{\langle q, v \rangle - J(v)\} \leq \sup_v + \{\langle q, v \rangle - J(u) - \langle p, v - u \rangle - \frac{\mu}{2} \|v - u\|^2\} = \langle q, u \rangle - J(u) + \sup_v \{\langle q - p, v - u \rangle - \frac{\mu}{2} \|v - u\|^2\} = \langle q, u \rangle - J(u) + \frac{1}{2\mu} \|q - p\|^2 = \langle p, u \rangle - J(u) + \langle q - p, u \rangle + \frac{1}{2\mu} \|q - p\|^2 = J^*(p) \langle q - p, u \rangle + \frac{1}{2\mu} \|q - p\|^2$. Here we have used the identity $\langle p, u \rangle - J(u) = J^*(p)$. We have actually derived $\lim_{q \to p} \|J^*(q) - J^*(p) - \langle q - p, u \rangle \|/\|q - p\| = 0$, which asserts that J^* is (Frechét-)differentiable at p with $\nabla J^*(p) = u$.

Finally we show ∇J^* is $\frac{1}{\mu}$ -Lipschitz. Let $u = \nabla J^*(p), \ v = \nabla J^*(q),$ or equivalently $p \in \partial J(u), \ q \in \partial J(v)$. Then by (1) we have

$$J(v) \ge J(u) + \langle p, v - u \rangle + \frac{\mu}{2} ||v - u||^2,$$

$$J(u) \ge J(v) + \langle q, u - v \rangle + \frac{\mu}{2} ||u - v||^2.$$

Adding the above two inequalities, we obtain $\mu \|u-v\|^2 \le \langle p-q, u-v \rangle \le \|p-q\| \|u-v\|$ and thus $\|u-v\| \le \frac{1}{\mu} \|p-q\|$.

Theorem 1.13 (Fenchel-Rockafellar duality). Assume $\exists \bar{u} \in \text{dom } G \text{ s.t. } F \text{ is continuous at } K\bar{u}$. Then the strong duality holds: $\mathcal{P}^* = \mathcal{D}^*$. Moreover, (u^*, p^*) is the optimal solution pair iff

$$\begin{cases} Ku^* \in \partial F^*(p^*), \\ -K^\top p^* \in \partial G(u^*). \end{cases}$$

Proof. Define $\Phi(\cdot) := \inf_u \{ F(Ku + \cdot) + G(u) \}$. Since $\forall v^1, v^2 \in \mathbb{R}^m$, $\forall \alpha \in [0, 1] : \alpha \Phi(v^1) + (1 - \alpha)\Phi(v^2) = \inf_{u^1} \{ \alpha F(Ku^1 + v^1) + \alpha G(u^1) \} + \inf_{u^2} \{ (1 - \alpha)F(Ku^2 + v^2) + (1 - \alpha)G(u^2) \} = \inf_{u^1,u^2} \{ \alpha F(Ku^1 + v^1) + (1 - \alpha)F(Ku^2 + v^2) + \alpha G(u^1) + (1 - \alpha)G(u^2) \} \ge \inf_u \{ \alpha F(Ku + v^1) + (1 - \alpha)F(Ku + v^2) + G(u) \} \ge \inf_u \{ F(Ku + \alpha v^1 + (1 - \alpha)v^2) + G(u) \} = \Phi(\alpha v^1 + (1 - \alpha)v^2)$, we prove that Φ is a convex function.

Without loss of generality, assume $\Phi(0) > -\infty$. By our assumption, $\exists \epsilon > 0$ s.t. $\forall \|v\| < \epsilon$: $\Phi(v) \leq F(K\bar{u}+v) + G(\bar{u}) \leq M$ for some $M < \infty$. Hence, by Theorem 1.2, Φ is locally Lipschitz at 0, and $\Phi(0) = \Phi^{**}(0) = \sup_{p} -\Phi^{*}(p)$, where $\Phi^{*}(p) = \sup_{v} \{\langle p, v \rangle - \inf_{u} \{F(Ku+v) + G(u)\}\} = \sup_{v,u} \{\langle p, v + Ku \rangle + \langle -K^{\top}p, u \rangle - F(Ku+v) - G(u)\} = F^{*}(p) + G^{*}(-K^{\top}p)$. Thus, $\mathcal{P}^{*} = \mathcal{D}^{*}$ is proven.

As for the optimality condition, note that $\forall (u, p) : \mathcal{G}(u, p) = F(Ku) + G(u) + G^*(-K^\top p) + F^*(p) = F(Ku) + F^*(p) - \langle Ku, p \rangle + G(u) + G^*(-K^\top p) - \langle -K^\top p, u \rangle \geq 0$. The equality holds, i.e. $\mathcal{G}(u^*, p^*) = 0$, iff $Ku^* \in \partial F^*(p^*)$ and $-K^\top p^* \in \partial G(u^*)$ according to Theorem 1.10.

Theorem 1.14 (Moreau identity). Let $\tau > 0$ and $J : \mathbb{E} \to \overline{\mathbb{R}}$ be proper, convex, and lsc. Then the following identity holds:

$$\mathrm{id}(\cdot) = \mathrm{prox}_{\tau J}(\cdot) + \tau \, \mathrm{prox}_{\frac{1}{\tau}J^*}(\cdot/\tau).$$

 $\begin{array}{lll} \textit{Proof.} \ v = \tau \operatorname{prox}_{\frac{1}{\tau}J^*}(u/\tau) \ \Leftrightarrow \ \left(I + \frac{1}{\tau}\partial J^*\right)^{-1}(u/\tau) \ni v/\tau \ \Leftrightarrow \ \partial J^*(v/\tau) \ni u - v \ \Leftrightarrow \ v/\tau \in \partial J(u-v) \ \Leftrightarrow \ u - v = (I + \tau\partial J)^{-1}(u) = \operatorname{prox}_{\tau J}(u). \end{array}$

Theorem 1.15. Let $F, G : \mathbb{E} \to \overline{\mathbb{R}}$ be proper, convex, and lsc. Then

$$(F\square G)^*(\cdot) = F^*(\cdot) + G^*(\cdot).$$

 $\begin{array}{l} \textit{Proof.} \ \forall p \in \mathbb{E} : (F \square G)^*(p) = \sup_{u,v} \{ \langle p,u \rangle - F(v) - G(u-v) \} = \sup_{u,v} \{ \langle p,v \rangle - F(v) + \langle p,u-v \rangle - G(u-v) \} \\ = F^*(p) + G^*(p). \end{array}$

2 Optimization Algorithms

Theorem 2.1. If $\langle \nabla J(u^k), d^k \rangle < 0$, then $J(u^k + \tau d^k) < J(u^k)$ for all sufficiently small $\tau > 0$.

Proof. The conclusion follows directly from the Taylor expansion: $J(u^k + \tau d^k) = J(u^k) + \tau \langle \nabla J(u^k), d^k \rangle + o(\tau) = J(u^k) + \tau \left(\langle \nabla J(u^k), d^k \rangle + o(1) \right) < J(u^k)$, for all $\tau > 0$ sufficiently small.

Lemma 2.2 (feasibility of line search). Assume that $J : \mathbb{E} \to \mathbb{R}$ is continuously differentiable, $\langle \nabla J(u^k), d^k \rangle < 0 \ \forall k$, and $0 < c_1 < c_2 < 1$. Then there exists an open interval in which the step size τ satisfies the Armijo- and the curvature conditions.

Proof. Consider $\phi(\tau) := J(u^k + \tau d^k)$ and $\psi(\tau) := J(u^k) + \tau c_1 \langle \nabla J(u^k), d^k \rangle$ for $\tau \geq 0$. Since $\phi'(0) = \langle \nabla J(u^k), d^k \rangle < \psi'(0)$, $\phi(\tau) < \psi(\tau)$ for all $\tau > 0$ sufficiently close to 0. On the other hand, $\phi(\cdot)$ is bounded from below but $\psi(\cdot)$ is not. Hence, ϕ and ψ intersect at $\tau = \tau' > 0$ (for the first time as τ increases from 0). Thus, $0 < \tau < \tau'$ fulfills the Armijo condition.

By the mean value theorem, $\exists \tau'' \in (0, \tau')$ s.t. $J(u^k + \tau' d^k) - J(u^k) = \tau' \langle \nabla J(u^k + \tau'' d^k), d^k \rangle$. This implies $\langle \nabla J(u^k + \tau'' d^k), d^k \rangle = c_1 \langle \nabla J(u^k), d^k \rangle > c_2 \langle \nabla J(u^k), d^k \rangle$ since $c_1 < c_2$ and $\langle \nabla J(u^k), d^k \rangle < 0$. By continuity, this inequality holds in a neighborhood of τ'' .

Theorem 2.3 (Zoutendijk). Assume that $J: \mathbb{E} \to \mathbb{R}$ is continuously differentiable, and the Armijo- and the curvature conditions are both satisfied with $0 < c_1 < c_2 < 1$ for each k. In addition, $\nabla J(\cdot)$ is μ -Lipschitz on $\{u \in \mathbb{E}: J(u) \leq J(u^0)\}$. Then we have $\sum_{k=0}^{\infty} \frac{\left|\left\langle \nabla J(u^k), d^k \right\rangle\right|^2}{\|d^k\|^2} < \infty$.

Proof. From the curvature condition, we have $\langle \nabla J(u^{k+1}) - \nabla J(u^k), d^k \rangle \ge (c_2 - 1) \langle \nabla J(u^k), d^k \rangle$. Since ∇J is μ -Lipschitz, $\langle \nabla J(u^{k+1}) - \nabla J(u^k), d^k \rangle \le \tau^k \mu \|d^k\|^2$. Altogether we have $\tau^k \ge \frac{(c_2 - 1) \langle \nabla J(u^k), d^k \rangle}{\mu \|d^k\|^2}$. Using the Armijo condition, we have $J(u^{k+1}) \le J(u^k) - \frac{c_1(1 - c_2) |\langle \nabla J(u^k), d^k \rangle|^2}{\mu \|d^k\|^2}$. Summing up this inequality from k = 0 to ∞ , we have $\sum_{k=0}^{\infty} \frac{|\langle \nabla J(u^k), d^k \rangle|^2}{\|d^k\|^2} < \infty$.

Lemma 2.4. Assume $J: \mathbb{E} \to \mathbb{R}$ is convex with μ -Lipschitz gradient. Then $\forall u, v \in \mathbb{E}$:

$$|J(v) - J(u) - \langle \nabla J(u), v - u \rangle| \le \frac{\mu}{2} ||v - u||^2.$$

Proof. Since $J(v) = J(u) + \int_0^1 \langle \nabla J(u + t(v - u)), v - u \rangle dt = J(u) + \langle \nabla J(u), v - u \rangle + \int_0^1 \langle \nabla J(u + t(v - u)) - \nabla J(u), v - u \rangle dt$, we have $|J(v) - J(u) - \langle \nabla J(u), v - u \rangle|$ $= \left| \int_0^1 \langle \nabla J(u + t(v - u)) - \nabla J(u), v - u \rangle dt \right| \leq \int_0^1 |\langle \nabla J(u + t(v - u)) - \nabla J(u), v - u \rangle| dt$ $\leq \int_0^1 ||\nabla J(u + t(v - u)) - \nabla J(u)|| ||v - u|| dt \leq \int_0^1 t \mu ||v - u||^2 dt = \frac{\mu}{2} ||v - u||^2.$

Theorem 2.5 (convergence of gradient descent). Assume $J: \mathbb{E} \to \mathbb{R}$ is convex with μ -Lipschitz gradient. Then the gradient descent iteration $u^{k+1} = u^k - \tau \nabla J(u^k)$ with $\tau \in (0, 1/\mu]$ yields $\lim_{k\to\infty} \nabla J(u^k) = 0$.

Proof. First, note that $J(u^{k+1}) \leq J(u^k) \ \forall k$. Since J has a (finite) minimum by assumption, $\lim_{k\to\infty} |J(u^{k+1}) - J(u^k)| = 0$. Due to the majorization property and $\mu \leq 1/\tau$, we have $J(u^{k+1}) \leq J(u^k) + \langle \nabla J(u^k), u^{k+1} - u^k \rangle + \frac{1}{2\tau} \|u^{k+1} - u^k\|^2 = J(u^k) - \frac{1}{2\tau} \|u^{k+1} - u^k\|^2$. Hence, we conclude $\|\nabla J(u^k)\| = \frac{1}{\tau} \|u^{k+1} - u^k\| \to 0$.

Proposition 2.6. Let C be a nonempty, closed, convex subset of \mathbb{E} , $\Phi: C \to \mathbb{E}$, and $\alpha \in (0,1)$. Then the following statements are equivalent:

- 1. Φ is α -averaged.
- 2. $(1-\frac{1}{\alpha})I + \frac{1}{\alpha}\Phi$ is nonexpansive.
- 3. $\forall u, v \in C : \|\Phi(u) \Phi(v)\|^2 \le \|u v\|^2 \frac{1-\alpha}{\alpha}\|(I \Phi)(u) (I \Phi)(v)\|^2$.
- 4. $\forall u, v \in C : \|\Phi(u) \Phi(v)\|^2 + (1 2\alpha)\|u v\|^2 < 2(1 \alpha)\langle u v, \Phi(u) \Phi(v)\rangle$.

Proof. By the definition of the averaged operator, $\Phi = (1 - \alpha)I + \alpha\Psi$ for some nonexpansive

operator $\Psi: C \to \mathbb{E}$, or $\Psi = (1 - \frac{1}{\alpha})I + \frac{1}{\alpha}\Phi$. Hence, $(1) \Leftrightarrow (2)$ follows. $(2) \Leftrightarrow \Psi = (1 - \frac{1}{\alpha})I + \frac{1}{\alpha}\Phi \text{ is nonexpansive} \Leftrightarrow \|\Psi(u) - \Psi(v)\| \leq \|u - v\| \Leftrightarrow \alpha^2 \|u - v\|^2 \geq \|((\alpha - 1)I + \Phi)(u) - ((\alpha - 1)I + \Phi)(v)\|^2 = \|\Phi(u) - \Phi(v)\|^2 + (\alpha - 1)^2 \|u - v\|^2 + 2(\alpha - 1) \langle u - v, \Phi(u) - \Phi(v) \rangle$ \Leftrightarrow (4).

Note that $2\langle u-v, \Phi(u)-\Phi(v)\rangle = \|(I-\Phi)(u)-(I-\Phi)(v)\|^2 - \|u-v\|^2 - \|\Phi(u)-\Phi(v)\|^2$. Hence, $(4) \Leftrightarrow \|\Phi(u) - \Phi(v)\|^2 + (1 - 2\alpha)\|u - v\|^2 \leq (1 - \alpha)\|(I - \Phi)(u) - (I - \Phi)(v)\|^2 - (1 - \alpha)\|(I - \Phi)(u)\|^2 + (1 - \alpha)\|(I \alpha \|u - v\|^2 - (1 - \alpha) \|\Phi(u) - \Phi(v)\|^2 \Leftrightarrow (3).$

Theorem 2.7 (Baillon-Haddad). Let $J: \mathbb{E} \to \mathbb{R}$ be a convex, continuously differentiable function. Then ∇J is a nonexpansive operator iff ∇J is firmly nonexpansive.

Proof. (if) Obvious.

(only if) Define $H(\cdot) := \frac{1}{2} \|\cdot\|^2 - J(\cdot)$. Note that H is continuously differentiable and $\nabla H = I - \nabla J$. Since ∇J is nonexpansive, we have $\forall u, v : \langle \nabla H(v) - \nabla H(u), v - u \rangle \geq ||v - v||$ $u\|(\|v - u\| - \|\nabla J(v) - \nabla J(u)\|) \ge 0.$

This implies $\forall u, v : H(v) - H(u) = \int_0^1 \langle \nabla H(u + t(v - u)), v - u \rangle dt \ge \int_0^1 \langle \nabla H(u), v - u \rangle dt = \int_0^1 \langle \nabla H(u), v - u \rangle dt$ $\langle \nabla H(u), v - u \rangle$. Furthermore, $H(v) \ge H(u) + \langle \nabla H(u), v - u \rangle \Rightarrow \frac{1}{2} ||v||^2 - J(v) \ge \frac{1}{2} ||u||^2 - J(u) + \frac{1}{2} ||v||^2 - \frac{1}{2} ||v||^2 -$ $\langle u - \nabla J(u), v - u \rangle \Rightarrow J(v) - J(u) - \langle \nabla J(u), v - u \rangle \le \frac{1}{2} \|v\|^2 - \frac{1}{2} \|u\|^2 + \langle u, u - v \rangle = \frac{1}{2} \|v - u\|^2$.

Define $D_J(w,u) := J(w) - J(u) - \langle \nabla J(u), w - u \rangle$, $\forall w, u \in \mathbb{E}$. The above result says $\frac{1}{2} ||w - u|| = \frac{1}{2} ||w|| = \frac{1}{2} ||w$ $|u|^2 \ge D_J(w,u), \forall w,u.$ Fix u temporarily and let $d(\cdot) = D_J(\cdot,u)$. Then d is convex, $d(\cdot) \ge 0$, $\nabla d(\cdot) = \nabla J(\cdot) - \nabla J(u)$, and $D_J(\cdot, u) = D_d(\cdot, u)$. Therefore, we have $\frac{1}{2} \|w - v\|^2 \ge D_d(w, v) = 0$ $d(w)-d(v)-\langle \nabla d(v),w-v\rangle=d(w)-d(v)-\langle \nabla J(v)-\nabla J(u),w-v\rangle \text{ . Set } w=v-\nabla J(v)+\nabla J(u),$ then we have $D_J(v, u) = d(v) \ge d(w) + \frac{1}{2} \|\nabla J(v) - \nabla J(u)\|^2 \ge \frac{1}{2} \|\nabla J(v) - \nabla J(u)\|^2$.

Analogously, we can show $D_J(u,v) \ge \frac{1}{2} \|\nabla J(u) - \nabla J(v)\|^2$. Hence, $\langle \nabla J(v) - \nabla J(u), v - u \rangle = D_J(u,v) + D_J(v,u) \ge \|\nabla J(v) - \nabla J(u)\|^2$ and ∇J is firmly nonexpansive by Proposition 2.6. \square

Corollary 2.8. Assume that $G: \mathbb{E} \to \mathbb{R}$ is a convex, differentiable function with μ -Lipschitz ∇G , $\tau = 2\alpha/\mu$, and $\alpha \in (0,1)$, then $I - \tau \nabla G$ is α -averaged.

Proof. Since $\frac{1}{\mu}\nabla G$ is nonexpansive, by the Baillon-Haddad theorem, $\frac{1}{\mu}\nabla G$ is firmly nonexpansive, i.e. $\exists \Psi : \mathbb{E} \to \mathbb{E}$ nonexpansive s.t. $\frac{1}{\mu}\nabla G = \frac{1}{2}I + \frac{1}{2}\Psi$. Hence, $I - \tau\nabla G = (1 - \frac{\tau\mu}{2})I - \frac{\tau\mu}{2}\Psi = \frac{1}{2}I + \frac{1}{2}\Psi$. $(1-\alpha)I + \alpha(-\Psi)$, i.e. $I - \tau \nabla G$ is α -averaged.

Theorem 2.9 (composition of averaged operators). Let C be a nonempty, closed, convex subset of \mathbb{E} . For each $i \in \{1, ..., m\}$, let $\alpha_i \in (0, 1)$ and $\Phi_i : C \to \mathbb{E}$ be an α_i -averaged operator. Then

$$\Phi = \Phi_m \circ \dots \circ \Phi_1$$

is α -averaged with

$$\alpha = \frac{m}{m-1 + \frac{1}{\max_{1 \le i \le m} \alpha_i}}.$$

Proof. Let $\kappa_i := \alpha_i/(1-\alpha_i)$ for each i, and $\kappa := \max_i \kappa_i$. For arbitrarily fixed $u, v \in C$, we

$$\begin{split} &\|(I-\Phi)(u)-(I-\Phi)(v)\|^2/m\\ &=\|(I-\Phi_1)(u)-(I-\Phi_1)(v)+[(I-\Phi_2)\circ\Phi_1](u)-[(I-\Phi_2)\circ\Phi_1](v)+\dots\\ &+[(I-\Phi_m)\circ\Phi_{m-1}\circ\dots\circ\Phi_1](u)-[(I-\Phi_m)\circ\Phi_{m-1}\circ\dots\circ\Phi_1)](v)\|^2/m\\ &\leq\|(I-\Phi_1)(u)-(I-\Phi_1)(v)\|^2+\|[(I-\Phi_2)\circ\Phi_1](u)-[(I-\Phi_2)\circ\Phi_1](v)\|^2+\dots\\ &+\|[(I-\Phi_m)\circ\Phi_{m-1}\circ\dots\circ\Phi_1](u)-[(I-\Phi_m)\circ\Phi_{m-1}\circ\dots\circ\Phi_1)](v)\|^2\\ &\leq\kappa_1(\|u-v\|^2-\|\Phi_1(u)-\Phi_1(v)\|^2)+\kappa_2(\|\Phi_1(u)-\Phi_1(v)\|^2-\|[\Phi_2\circ\Phi_1](u)-[\Phi_2\circ\Phi_1](v)\|^2)\\ &+\dots+\kappa_m([\Phi_{m-1}\circ\dots\circ\Phi_1](u)-[\Phi_{m-1}\circ\dots\circ\Phi_1](v)\|^2-\|[\Phi_m\circ\dots\circ\Phi_1](u)-[\Phi_m\circ\dots\circ\Phi_1](v)\|^2\\ &\leq\kappa(\|u-v\|^2-\|\Phi(u)-\Phi(v)\|^2). \end{split}$$

Since (1) \Leftrightarrow (3) in Proposition 2.6, Φ is α -averaged with $\frac{1-\alpha}{\alpha} = \frac{1}{m\kappa}$, or equivalently $\alpha =$ $\frac{m}{m+1/\kappa}$.

Theorem 2.10 (Krasnoselskii). Let C be a nonempty, closed, convex subset of \mathbb{E} , and $u^{k+1} =$ $\Phi(u^k)$ for k=0,1,2,... where $\Phi: C \to C$ satisfies:

- 1. Φ is α -averaged for some $\alpha \in (0,1)$.
- 2. Φ has at least one fixed point.

Then $\{u^k\}$ converges to a fixed point of Φ .

Proof. Let $\bar{u} \in C$ be an arbitrary fixed point of Φ . Since Φ is α -averaged, we have $\forall k$: $\|u^{k+1} - \bar{u}\|^2 = \|\Phi(u^k) - \Phi(\bar{u})\|^2 \le \|u^k - \bar{u}\|^2 - \frac{1-\alpha}{\alpha}\|(I - \Phi)(u^k) - (I - \Phi)(\bar{u})\|^2 = \|u^k - \bar{u}\|^2 - \frac{1-\alpha}{\alpha}\|(I - \Phi)(u^k)\|^2.$ Summing up this inequality for all indices in $l \in [0, k]$, we have

$$||u^{k+1} - \bar{u}||^2 \le ||u^0 - \bar{u}||^2 - \frac{1-\alpha}{\alpha} \sum_{l=0}^k ||(I-\Phi)(u^l)||^2.$$

This yields: (i) $||u^k - \bar{u}|| \searrow c \ge 0$; (ii) $\sum_{k=0}^{\infty} ||(I - \Phi)(u^k)||^2 < \infty$. By (i), $\{u^k\}$ is uniformly bounded. Let $\{u^{k'}\}$ be any convergent subsequence of $\{u^k\}$ s.t. $u^* = \lim_{k' \to \infty} u^{k'} \in C$. By (ii), $||(I - \Phi)(u^*)|| = \lim_{k' \to \infty} ||(I - \Phi)(u^{k'})|| = 0$, i.e. u^* is a fixed point of

Finally, we show the limit u^* is unique for any convergent subsequence of $\{u^k\}$. Assume that another subsequence of $\{u^k\}$, say $\{u^{k''}\}$, converges to $u^{**} \in C$. Then both $\lim_{k\to\infty} \|u^k - u^*\|^2$ and $\lim_{k\to\infty} \|u^k - u^{**}\|^2$ exist, and therefore $2\langle u^k, u^{**} - u^* \rangle = \|u^k - u^*\|^2 - \|u^k - u^{**}\|^2 - \|u^k - u^{**}\|^2$ $\|u^*\|^2 + \|u^{**}\|^2 \to c' \in \mathbb{R}. \text{ Passing } k \to \infty \text{ along subindices } \{k'\} \text{ and } \{k''\} \text{ respectively, we have } 2 \langle u^*, u^{**} - u^* \rangle = 2 \langle u^{**}, u^{**} - u^* \rangle = c' \text{ and hence } \|u^* - u^{**}\|^2 = 0. \text{ Thus, we have shown that } \lim_{k \to \infty} u^k = u^*.$

Theorem 2.11 (Krasnoselskii-Mann). Let C be a nonempty, closed, convex subset of \mathbb{E} , and $u^{k+1} = (1 - \tau^k)u^k + \tau^k \Psi(u^k)$ for k = 0, 1, 2, ... where $\{\tau^k\} \subset [0, 1]$ s.t.

$$\sum_{k=0}^{\infty} \tau^k (1 - \tau^k) = \infty,$$

and $\Psi: C \to C$ satisfies:

- 1. Ψ is nonexpansive.
- 2. Ψ has at least one fixed point.

Then $\{u^k\}$ converges to a fixed point of Ψ .

Proof. Let $\bar{u} \in C$ be an arbitrary fixed point of Ψ . Then $\forall k : \|u^{k+1} - \bar{u}\|^2 = \|(1 - \tau^k)(u^k - \bar{u}) + \tau^k(\Psi(u^k) - \bar{u})\|^2 = (1 - \tau^k)\|u^k - \bar{u}\|^2 + \tau^k\|\Psi(u^k) - \bar{u}\|^2 - \tau^k(1 - \tau^k)\|\Psi(u^k) - u^k\|^2 \le 1$ $\|u^k - \bar{u}\|^2 - \tau^k (1 - \tau^k) \|\Psi(u^k) - u^k\|^2$. Summing up this inequality for all indices in $l \in [0, k]$, we have

$$||u^{k+1} - \bar{u}||^2 \le ||u^0 - \bar{u}||^2 - \sum_{l=0}^k \tau^k (1 - \tau^k) ||(I - \Psi)(u^l)||^2.$$

This yields: (i) $||u^k - \bar{u}|| \searrow c \ge 0$; (ii) $\sum_{k=0}^{\infty} \tau^k (1 - \tau^k) ||(I - \Psi)(u^k)||^2 < \infty$. (ii) further implies $\liminf_{k \to \infty} ||(I - \Psi)(u^k)|| = 0$. Otherwise $\exists \bar{k} \in \mathbb{N}, \ \epsilon > 0$, s.t. $\forall k \ge \bar{k} : ||(I - \Psi)(u^k)|| \ge \epsilon$, and hence $\infty > \sum_{k=0}^{\infty} \tau^k (1 - \tau^k) ||(I - \Psi)(u^k)||^2 \ge \sum_{k=\bar{k}}^{\infty} \tau^k (1 - \tau^k) ||(I - \Psi)(u^k)||^2 \ge \epsilon^2 \tau^k (1 - \tau^k) = \infty$. Moreover, $||(I - \Psi)(u^{k+1})|| = ||(1 - \tau^k)(u^k - \Psi(u^k)) + (\Psi(u^k) - \Psi(u^{k+1}))|| \le (1 - \tau^k) ||u^k - \Psi(u^k)|| + ||u^{k+1} - u^k|| = ||(I - \Psi)(u^k)||$. Altogether, we obtain $\lim_{k\to\infty} \|(I-\Psi)(u^k)\| = 0.$

The remainder of the proof is identical to that for Theorem 2.10.

Lemma 2.12 (demiclosedness principle). Let C be a nonempty, closed, convex subset of a real Hilbert space \mathbb{H} , and $\Phi: C \to \mathbb{H}$ be nonexpansive. For any sequence $\{u^k\} \subset C$ s.t. $\{u^k\}$ weakly converges to $u \in C$ and $u^k - \Phi(u^k)$ strongly converges to $v \in \mathbb{H}$, we have $u - \Phi(u) = v$.

Proof. Since $\{u^k\}$ weakly converges to u^* and C is weakly closed (for being convex and strongly closed), we have $u \in C$ and $\Phi(u)$ is well defined. By the nonexpansiveness of Φ , we derive

$$||u - \Phi(u) - v||^{2} = ||u^{k} - \Phi(u) - v||^{2} - ||u^{k} - u||^{2} - 2\left\langle u^{k} - u, u - \Phi(u) - v\right\rangle$$

$$= ||u^{k} - \Phi(u^{k}) - v||^{2} + 2\left\langle u^{k} - \Phi(u^{k}) - v, \Phi(u^{k}) - \Phi(u)\right\rangle + ||\Phi(u^{k}) - \Phi(u)||^{2} - ||u^{k} - u||^{2}$$

$$- 2\left\langle u^{k} - u, u - \Phi(u) - v\right\rangle$$

$$\leq ||u^{k} - \Phi(u^{k}) - v||^{2} + 2\left\langle u^{k} - \Phi(u^{k}) - v, \Phi(u^{k}) - \Phi(u)\right\rangle - 2\left\langle u^{k} - u, u - \Phi(u) - v\right\rangle \to 0.$$

Note that, in the last inequality above, $\Phi(u^k) - \Phi(u) = (\Phi^k(u^k) - u^k + v) + (u^k - \Phi(u) - v)$ weakly converges to $u - \Phi(u) - v$.