Convex Optimization for Machine Learning and Computer Vision

Lecture: T. Wu
Exercises: E. Laude, T. Möllenhoff
Summer Semester 2017

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 1

Room: 02.09.023
Monday, 08.05.2017, 12:15-14:00
Submission deadline: Wednesday, 03.05.2017, 16:15, Room 02.09.023

Convex Sets

(8 Points +4 Bonus)
Exercise 1 (4 Points). Show that a set is convex if and only if its intersection with any line is convex.
Exercise 2 (4 Points). Let \mathcal{C} be a family of convex sets in $\mathbb{R}^{n}, C_{1}, C_{2} \in \mathcal{C}, A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{m}, \lambda \in \mathbb{R}$. Prove convexity of the following sets:

- $\bigcap_{C \in \mathcal{C}} C$
- $P:=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$
- $C_{1}+C_{2}:=\left\{x+y: x \in C_{1}, y \in C_{2}\right\}$ (the Minkowski sum of C_{1} and C_{2})
- $\lambda C_{1}:=\left\{\lambda x: x \in C_{1}\right\}$ (the λ-dilatation of C_{1}).

Definition (Convex Hull). The convex hull $\operatorname{conv}(S)$ of a finite set of points $S \subset \mathbb{R}^{n}$ is defined as

$$
\operatorname{conv}(S):=\left\{\sum_{i=1}^{|S|} a_{i} x_{i}: x_{i} \in S, \sum_{i=1}^{|S|} a_{i}=1, a_{i} \geq 0\right\}
$$

Exercise 3 (4 Points). Prove the following statement: Let $n \in \mathbb{N}$ and let $A \subset \mathbb{R}^{n}$ contain $n+2$ elements: $|A|=n+2$. Then there exists a partition of A into two disjoint sets A_{1}, A_{2}

$$
A=A_{1} \dot{\cup} A_{2}
$$

(meaning that $A_{1} \cap A_{2}=\emptyset$) so that the convex hulls of A_{1} and A_{2} intersect:

$$
\operatorname{conv}\left(A_{1}\right) \cap \operatorname{conv}\left(A_{2}\right) \neq \emptyset
$$

You may use the following hint. Don't forget to prove the hint!
Hint: Let $x_{1}, \ldots, x_{n+2} \in \mathbb{R}^{n}$. Then the set $\left\{x_{1}-x_{n+2}, \ldots, x_{n+1}-x_{n+2}\right\}$ is linearly dependent and there exist multipliers a_{1}, \ldots, a_{n+2}, not all of which are zero, so that

$$
\sum_{i=1}^{n+2} a_{i} x_{i}=0, \quad \sum_{i=1}^{n+2} a_{i}=0
$$

The desired partition is formed via all points corresponding with $a_{i} \geq 0$ and all points with $a_{i}<0$.

Intro to Sparse Matrices in MATLAB

(5 Points)
Throughout the course we will work in the finite dimensional setting, i.e. we discretely represent gray value images $f: \Omega \rightarrow \mathbb{R}$ or color images $f: \Omega \rightarrow \mathbb{R}^{3}$ as (vectorized) matrices $f \in \mathbb{R}^{m \times n}\left(\operatorname{vec}(f) \in \mathbb{R}^{m n}\right)$ respectively $f \in \mathbb{R}^{m \times n \times 3}\left(\operatorname{vec}(f) \in \mathbb{R}^{3 m n}\right)$. To discretely express functionals like the total variation for smooth f

$$
T V(f):=\int_{\Omega}\|\nabla f(x)\| \mathrm{d} x
$$

you will therefore need a discrete gradient operator

$$
\nabla:=\binom{D_{x}}{D_{y}}
$$

for vectorized representations $\operatorname{vec}(f)$ of images $f \in \mathbb{R}^{m \times n}$ so that

$$
T V(f)=\|\nabla \operatorname{vec}(f)\|_{2,1}=\sum_{i=1}^{n m} \sqrt{\left(D_{x} \cdot \operatorname{vec}(f)\right)_{i}^{2}+\left(D_{y} \cdot \operatorname{vec}(f)\right)_{i}^{2}}
$$

The aim of this exercise is to derive the gradient operator and learn how to implement it with MATLAB.

Exercise 4 (1 Point). Let $f \in \mathbb{R}^{m \times n}$ be a discrete grayvalue image. Your task is to find matrices \tilde{D}_{x} and \tilde{D}_{y} for computing the forward differences f_{x}, f_{y} in x and y-direction of the image f with Neumann boundary conditions so that:

$$
f_{x}=f \cdot \tilde{D}_{x}:=\left(\begin{array}{ccccc}
f_{12}-f_{11} & f_{13}-f_{12} & \cdots & f_{1 n}-f_{1(n-1)} & 0 \tag{1}\\
f_{22}-f_{21} & \cdots & & & 0 \\
\vdots & & & \vdots & 0 \\
f_{m 2}-f_{m 1} & \cdots & & f_{m n}-f_{m(n-1)} & 0
\end{array}\right)
$$

and

$$
f_{y}=\tilde{D}_{y} \cdot f=\left(\begin{array}{cccc}
f_{21}-f_{11} & f_{22}-f_{12} & \cdots & f_{2 n}-f_{1 n} \tag{2}\\
f_{31}-f_{21} & \cdots & & f_{3 n}-f_{2 n} \\
\vdots & & & \vdots \\
f_{m 1}-f_{(m-1) 1} & \cdots & & f_{m n}-f_{(m-1) n} \\
0 & \cdots & 0 & 0
\end{array}\right)
$$

Exercise 5 (1 Point). Implement the derivative operators from the previous exercise using MATLABs spdiags command. Load the image from the file Vegetation-028.jpg using the command imread and convert it to a grayvalue image using the command rgb2gray. Finally apply the operators to the image and display your results using imshow.

For our algorithms it is more convenient to represent an image f as a vector $\operatorname{vec}(f) \in \mathbb{R}^{m n}$, that means that the columns of f are stacked one over the other.

Exercise 6 (1 Point). Derive a gradient operator

$$
\nabla=\binom{D_{x}}{D_{y}}
$$

for vectorized images so that

$$
D_{x} \cdot \operatorname{vec}(f)=\operatorname{vec}\left(f_{x}\right) \quad D_{y} \cdot \operatorname{vec}(f)=\operatorname{vec}\left(f_{y}\right)
$$

You can use that it holds that for matrices A, X, B

$$
A X B=C \Longleftrightarrow\left(B^{\top} \otimes A\right) \operatorname{vec}(X)=\operatorname{vec}(C)
$$

where \otimes denote the Kronecker (MATLAB: kron) product.
Experimentally verify that the results of Ex. 2 and Ex. 3 are equal by reshaping them to the same size using MATLABs reshape or the : operator, and showing that the norm of the difference of both results is zero.

Exercise 7 (1 Point). Assemble an operator ∇_{c} for computing the gradient (or more precisely the Jacobian) of a color image $f \in \mathbb{R}^{n \times m \times 3}$ using MATLABs cat and kron commands.

Exercise 8 (1 Point). Compute the color total variation given as
$T V(f)=\left\|\nabla_{c} \operatorname{vec}(f)\right\|_{F, 1}=\sum_{i=1}^{n m}\left\|\left(\begin{array}{ccc}\left(D_{x} \cdot \operatorname{vec}\left(f_{r}\right)\right)_{i} & \left(D_{x} \cdot \operatorname{vec}\left(f_{g}\right)\right)_{i} & \left(D_{x} \cdot \operatorname{vec}\left(f_{b}\right)\right)_{i} \\ \left(D_{y} \cdot \operatorname{vec}\left(f_{r}\right)\right)_{i} & \left(D_{y} \cdot \operatorname{vec}\left(f_{g}\right)\right)_{i} & \left(D_{y} \cdot \operatorname{vec}\left(f_{b}\right)\right)_{i}\end{array}\right)\right\|_{F}$
of the two images Vegetation-028.jpg and Vegetation-043.jpg and compare the values. What do you observe? Why?

