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Convex Sets (8 Points + 4 Bonus)
Exercise 1 (4 Points). Show that a set is convex if and only if its intersection with
any line is convex.

Exercise 2 (4 Points). Let C be a family of convex sets in Rn, C1, C2 ∈ C, A ∈ Rm×n,
b ∈ Rm, λ ∈ R. Prove convexity of the following sets:

•
⋂

C∈C C

• P := {x ∈ Rn : Ax ≤ b}

• C1 + C2 := {x+ y : x ∈ C1, y ∈ C2} (the Minkowski sum of C1 and C2)

• λC1 := {λx : x ∈ C1} (the λ-dilatation of C1).

Definition (Convex Hull). The convex hull conv(S) of a finite set of points S ⊂ Rn

is defined as

conv(S) :=


|S|∑
i=1

aixi : xi ∈ S,
|S|∑
i=1

ai = 1, ai ≥ 0


Exercise 3 (4 Points). Prove the following statement: Let n ∈ N and let A ⊂ Rn

contain n + 2 elements: |A| = n + 2. Then there exists a partition of A into two
disjoint sets A1, A2

A = A1∪̇A2,

(meaning that A1 ∩ A2 = ∅) so that the convex hulls of A1 and A2 intersect:

conv(A1) ∩ conv(A2) 6= ∅.
You may use the following hint. Don’t forget to prove the hint!

Hint: Let x1, . . . , xn+2 ∈ Rn. Then the set {x1−xn+2, . . . , xn+1−xn+2} is linearly
dependent and there exist multipliers a1, . . . , an+2, not all of which are zero, so that

n+2∑
i=1

aixi = 0,
n+2∑
i=1

ai = 0.

The desired partition is formed via all points corresponding with ai ≥ 0 and all
points with ai < 0.
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Intro to Sparse Matrices in MATLAB (5 Points)
Throughout the course we will work in the finite dimensional setting, i.e. we dis-
cretely represent gray value images f : Ω→ R or color images f : Ω→ R3 as (vector-
ized) matrices f ∈ Rm×n (vec(f) ∈ Rmn) respectively f ∈ Rm×n×3 (vec(f) ∈ R3mn).
To discretely express functionals like the total variation for smooth f

TV (f) :=

∫
Ω

‖∇f(x)‖ dx

you will therefore need a discrete gradient operator

∇ :=

(
Dx

Dy

)
for vectorized representations vec(f) of images f ∈ Rm×n so that

TV (f) = ‖∇vec(f)‖2,1 =
nm∑
i=1

√
(Dx · vec(f))2

i + (Dy · vec(f))2
i .

The aim of this exercise is to derive the gradient operator and learn how to implement
it with MATLAB.

Exercise 4 (1 Point). Let f ∈ Rm×n be a discrete grayvalue image. Your task is
to find matrices D̃x and D̃y for computing the forward differences fx, fy in x and
y-direction of the image f with Neumann boundary conditions so that:

fx = f · D̃x :=


f12 − f11 f13 − f12 . . . f1n − f1(n−1) 0
f22 − f21 . . . 0

...
... 0

fm2 − fm1 . . . fmn − fm(n−1) 0

 (1)

and

fy = D̃y · f =


f21 − f11 f22 − f12 . . . f2n − f1n

f31 − f21 . . . f3n − f2n
...

...
fm1 − f(m−1)1 . . . fmn − f(m−1)n

0 . . . 0 0

 . (2)

Exercise 5 (1 Point). Implement the derivative operators from the previous exercise
using MATLABs spdiags command. Load the image from the file Vegetation-028.jpg
using the command imread and convert it to a grayvalue image using the command
rgb2gray. Finally apply the operators to the image and display your results using
imshow.

For our algorithms it is more convenient to represent an image f as a vector
vec(f) ∈ Rmn, that means that the columns of f are stacked one over the other.
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Exercise 6 (1 Point). Derive a gradient operator

∇ =

(
Dx

Dy

)
for vectorized images so that

Dx · vec(f) = vec(fx) Dy · vec(f) = vec(fy)

You can use that it holds that for matrices A,X,B

AXB = C ⇐⇒ (B> ⊗ A)vec(X) = vec(C)

where ⊗ denote the Kronecker (MATLAB: kron) product.
Experimentally verify that the results of Ex. 2 and Ex. 3 are equal by reshaping

them to the same size using MATLABs reshape or the : operator, and showing
that the norm of the difference of both results is zero.

Exercise 7 (1 Point). Assemble an operator ∇c for computing the gradient (or
more precisely the Jacobian) of a color image f ∈ Rn×m×3 using MATLABs cat and
kron commands.

Exercise 8 (1 Point). Compute the color total variation given as

TV (f) = ‖∇cvec(f)‖F,1 =
nm∑
i=1

∥∥∥∥((Dx · vec(fr))i (Dx · vec(fg))i (Dx · vec(fb))i
(Dy · vec(fr))i (Dy · vec(fg))i (Dy · vec(fb))i

)∥∥∥∥
F

of the two images Vegetation-028.jpg and Vegetation-043.jpg and compare the
values. What do you observe? Why?
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