
Convex Optimization for Machine Learning and Computer Vision

Lecture: T. Wu Computer Vision Group
Exercises: E. Laude, T. Möllenhoff Institut für Informatik
Summer Semester 2017 Technische Universität München

Weekly Exercises 1
Room: 02.09.023

Monday, 08.05.2017, 12:15-14:00
Submission deadline: Wednesday, 03.05.2017, 16:15, Room 02.09.023

Convex Sets (8 Points + 4 Bonus)
Exercise 1 (4 Points). Show that a set is convex if and only if its intersection with
any line is convex.

Solution. Let X ⊂ Rn be a set and let Ly
x := {y + λx : λ ∈ R} ⊂ Rn for some

x, y ∈ Rn be a line.
“⇒”: Let X be a convex. Clearly, Ly

x is a convex set and therefore (cf. lecture)
Ly
x ∩X is convex.
“⇐”: Let Ly

x ∩X be convex for all x, y ∈ Rn. Let x1, x2 ∈ X and let λ ∈ [0, 1].
Then

λx1 + (1− λ)x2 = x2 + λ(x1 − x2) ∈ Lx2
x1−x2

.

Clearly, x1, x2 ∈ Lx2
x1−x2

and since Lx2
x1−x2

∩X is convex, λx1 + (1− λ)x2 ∈ X which
completes the proof.

Exercise 2 (4 Points). Let C be a family of convex sets in Rn, C1, C2 ∈ C, A ∈ Rm×n,
b ∈ Rm, λ ∈ R. Prove convexity of the following sets:

•
⋂

C∈C C

• P := {x ∈ Rn : Ax ≤ b}

• C1 + C2 := {x+ y : x ∈ C1, y ∈ C2} (the Minkowski sum of C1 and C2)

• λC1 := {λx : x ∈ C1} (the λ-dilatation of C1).

Solution.

• Let x1, x2 ∈
⋂

C∈C C. Then x1, x2 ∈ C for all C ∈ C. Since any C is convex,
µx1 +(1−µ)x2 ∈ C for all µ ∈ [0, 1] and C ∈ C and therefore µx1 +(1−µ)x2 ∈⋂

C∈C C.

• Let x1, x2 ∈ P , which means that Ax1 ≤ b and Ax2 ≤ b. Let µ ∈ [0, 1]. Then,
A(µx1 + (1 − µ)x2) = µAx1 + (1 − µ)Ax2 ≤ µb + (1 − µ)b = b. Therefore
µx1 + (1− µ)x2 ∈ P .

1

• Let x, y ∈ C1 +C2. Then there exist x1, y1 ∈ C1, x2, y2 ∈ C2 so that x = x1 +x2

and y = y1 + y2. Let µ ∈ [0, 1]. Then, since C1, C2 convex µx + (1 − µ)y =
µx1+µx2+(1−µ)y1+(1−µ)y2 = µx1 + (1− µ)y1︸ ︷︷ ︸

∈C1

+µx2 + (1− µ)y2︸ ︷︷ ︸
∈C2

∈ C1+C2.

• Let x, y ∈ C1 and µ ∈ [0, 1]. Then, since C1 convex, µλx + (1 − µ)λy =
λ (µx+ (1− µ)y)︸ ︷︷ ︸

∈C1

∈ λC1.

Definition (Convex Hull). The convex hull conv(S) of a finite set of points S ⊂ Rn

is defined as

conv(S) :=


|S|∑
i=1

aixi : xi ∈ S,
|S|∑
i=1

ai = 1, ai ≥ 0


Exercise 3 (4 Points). Prove the following statement: Let n ∈ N and let A ⊂ Rn

contain n + 2 elements: |A| = n + 2. Then there exists a partition of A into two
disjoint sets A1, A2

A = A1∪̇A2,

(meaning that A1 ∩ A2 = ∅) so that the convex hulls of A1 and A2 intersect:

conv(A1) ∩ conv(A2) 6= ∅.

You may use the following hint. Don’t forget to prove the hint!
Hint: Let x1, . . . , xn+2 ∈ Rn. Then the set {x1−xn+2, . . . , xn+1−xn+2} is linearly

dependent and there exist multipliers a1, . . . , an+2, not all of which are zero, so that

n+2∑
i=1

aixi = 0,
n+2∑
i=1

ai = 0.

The desired partition is formed via all points corresponding with ai ≥ 0 and all
points with ai < 0.

Solution. Let A := {x1, x2, . . . , xn+2} ⊂ Rn. Since n + 1 vectors in Rn are always
linearly dependent there exist scalars a1, . . . , an+1, not all of which are zero so that

n+1∑
i=1

ai(xi − xn+2) =
n+1∑
i=1

aixi +

(
−

n+1∑
i=1

ai

)
︸ ︷︷ ︸

=:an+2

xn+2 = 0.

Then, by construction
∑n+2

i=1 ai = 0. Define A1 := {xi : ai > 0} and A2 := {xj : aj ≤
0}. Clearly, A = A1∪̇A2 forms a partition and A1, A2 are both nonempty. Suppose
A2 was empty. Then ai > 0 for all 1 ≤ i ≤ n + 2. But an+2 := −

∑n+1
i=1 ai < 0

contradicts this assumption (The same holds for A1). We have that

0 =
∑
{i:ai<0}

aixi +
∑
{j:aj≥0}

ajxj ⇐⇒
∑
{i:ai<0}

−ai︸︷︷︸
≥0

xi =
∑
{j:aj≥0}

ajxj,

2

and on the other hand

0 =
∑
{i:ai<0}

ai +
∑
{j:aj≥0}

aj ⇐⇒
∑
{i:ai<0}

−ai =
∑
{j:aj≥0}

aj =: w > 0.

Altogether this yields ∑
{i:ai<0}

−ai
w
xi︸ ︷︷ ︸

∈conv(A1)

=
∑
{j:aj≥0}

aj
w
xj︸ ︷︷ ︸

∈conv(A2)

,

which completes the proof. The theorem is called Radon’s Theorem.

3

Intro to Sparse Matrices in MATLAB (5 Points)
Throughout the course we will work in the finite dimensional setting, i.e. we dis-
cretely represent gray value images f : Ω→ R or color images f : Ω→ R3 as (vector-
ized) matrices f ∈ Rm×n (vec(f) ∈ Rmn) respectively f ∈ Rm×n×3 (vec(f) ∈ R3mn).
To discretely express functionals like the total variation for smooth f

TV (f) :=

∫
Ω

‖∇f(x)‖ dx

you will therefore need a discrete gradient operator

∇ :=

(
Dx

Dy

)
for vectorized representations vec(f) of images f ∈ Rm×n so that

TV (f) = ‖∇vec(f)‖2,1 =
nm∑
i=1

√
(Dx · vec(f))2

i + (Dy · vec(f))2
i .

The aim of this exercise is to derive the gradient operator and learn how to implement
it with MATLAB.

Exercise 4 (1 Point). Let f ∈ Rm×n be a discrete grayvalue image. Your task is
to find matrices D̃x and D̃y for computing the forward differences fx, fy in x and
y-direction of the image f with Neumann boundary conditions so that:

fx = f · D̃x :=


f12 − f11 f13 − f12 . . . f1n − f1(n−1) 0
f22 − f21 . . . 0

...
... 0

fm2 − fm1 . . . fmn − fm(n−1) 0

 (1)

and

fy = D̃y · f =


f21 − f11 f22 − f12 . . . f2n − f1n

f31 − f21 . . . f3n − f2n
...

...
fm1 − f(m−1)1 . . . fmn − f(m−1)n

0 . . . 0 0

 . (2)

Solution. The corresponding operators D̃x and D̃y are given as follows:

D̃x =


−1 0 . . . 0 0
1 −1 . . . 0 0

0 1
. . . 0 0

0 0
. . . −1 0

0 . . . 1 0

 D̃y =



−1 1 . . . 0 0
0 −1 1 . . . 0 0

0 0
. 0 0

0 0 −1 1 0
0 0 . . . −1 1
0 0 . . . 0 0


(3)

4

Exercise 5 (1 Point). Implement the derivative operators from the previous exercise
using MATLABs spdiags command. Load the image from the file Vegetation-028.jpg
using the command imread and convert it to a grayvalue image using the command
rgb2gray. Finally apply the operators to the image and display your results using
imshow.

For our algorithms it is more convenient to represent an image f as a vector
vec(f) ∈ Rmn, that means that the columns of f are stacked one over the other.

Exercise 6 (1 Point). Derive a gradient operator

∇ =

(
Dx

Dy

)
for vectorized images so that

Dx · vec(f) = vec(fx) Dy · vec(f) = vec(fy)

You can use that it holds that for matrices A,X,B

AXB = C ⇐⇒ (B> ⊗ A)vec(X) = vec(C)

where ⊗ denote the Kronecker (MATLAB: kron) product.
Experimentally verify that the results of Ex. 2 and Ex. 3 are equal by reshaping

them to the same size using MATLABs reshape or the : operator, and showing
that the norm of the difference of both results is zero.

Solution. We have fx = f · D̃x = I · f · D̃x, where I is the identity matrix. If we
set A := I, X := f , B := D̃x and C := fx we obtain using the formula,

Dx = D̃>x ⊗ I. (4)

We have fy = D̃y · f = D̃y · f · I. We set A := D̃x, X := f , B := I and C := fy and
obtain using the formula:

Dy = I ⊗ D̃y. (5)

Exercise 7 (1 Point). Assemble an operator ∇c for computing the gradient (or
more precisely the Jacobian) of a color image f ∈ Rn×m×3 using MATLABs cat and
kron commands.

Solution.

∇c :=


Dx 0 0
0 Dx 0
0 0 Dx

Dy 0 0
0 Dy 0
0 0 Dy

 =

(
I ⊗Dx

I ⊗Dy

)
(6)

Exercise 8 (1 Point). Compute the color total variation given as

TV (f) = ‖∇cvec(f)‖F,1 =
nm∑
i=1

∥∥∥∥((Dx · vec(fr))i (Dx · vec(fg))i (Dx · vec(fb))i
(Dy · vec(fr))i (Dy · vec(fg))i (Dy · vec(fb))i

)∥∥∥∥
F

of the two images Vegetation-028.jpg and Vegetation-043.jpg and compare the
values. What do you observe? Why?

5

