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Convex Sets (8 Points + 4 Bonus)

Exercise 1 (4 Points). Show that a set is convex if and only if its intersection with
any line is convex.

Solution. Let X C R" be a set and let LY := {y + Az : A € R} C R” for some
x,y € R" be a line.

“=": Let X be a convex. Clearly, LY is a convex set and therefore (cf. lecture)
LY N X is convex.

“<” Let LY N X be convex for all z,y € R". Let x1,25 € X and let A € [0,1].
Then

)\371 + (1 — )\)1‘2 = X9 + )\(l‘l — ZL'Q) S Li?—xz‘

Clearly, z1, 22 € L3>, and since L, N X is convex, Ax; + (1 — Az, € X which
completes the proof.

Exercise 2 (4 Points). Let C be a family of convex sets in R", C;,Cy € C, A € R™*"
be R™ X éeR. Prove convexity of the following sets:

* Neec ©
o P:={zeR": Az < b}
e C1+Cy:={x+y:xeC,ye Cy} (the Minkowski sum of Cy and Cs)
o \C :={\z: 2 € (1} (the A\-dilatation of C).
Solution.

o Let 21,29 € (Noee C- Then 1,2, € C for all C' € C. Since any C' is convex,
pry+(1—p)xy € Cfor all u € [0,1] and C € C and therefore pxy + (1 —p)xs €
Neec C-

o Let x1, 15 € P, which means that Axy; < b and Az < b. Let p € [0,1]. Then,
A(pzy + (1 — p)za) = pAzy + (1 — p)Axe < pb+ (1 — p)b = b. Therefore
pxy + (1 — p)xe € P.



o Let x,y € C14+C5. Then there exist z1,1y; € C1, 22,y € Cy so that . = 1+ x4
and y = y; + yo. Let p € [0,1]. Then, since Cy,Cy convex px + (1 — p)y =
prrtpza+(1=p)yi+1=pys = poy + (1 — pys + pas + (1 — p)ys € Cr+Co.

vV vV
eC €Cy

e Let x,y € C; and pu € [0,1]. Then, since Cy convex, pux + (1 — p)\y =
Alpx + (1 —p)y) € ACL.
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Definition (Convex Hull). The convex hull conv(S) of a finite set of points S C R™

is defined as

S| S|
conv(S) := Zaixi cx; € S,Zai =1,a; >0
i=1 i=1

Exercise 3 (4 Points). Prove the following statement: Let n € N and let A C R”
contain n + 2 elements: |A| = n + 2. Then there exists a partition of A into two
disjoint sets Ay, A

A = Al UAQ,

(meaning that A; N Ay = () so that the convex hulls of A; and A, intersect:
conv(A;) Nconv(Ay) # 0.

You may use the following hint. Don’t forget to prove the hint!

Hint: Let z1,...,2,.2 € R". Then the set {x1 — 2, 2,...,2Tn11—Tpi2} is linearly
dependent and there exist multipliers ay, ..., a,12, not all of which are zero, so that
n+2 n+2

Zaixi:(), ZCLZIO
=1 =1

The desired partition is formed via all points corresponding with a; > 0 and all
points with a; < 0.

Solution. Let A := {x1,z9,...,2,12} C R". Since n + 1 vectors in R" are always
linearly dependent there exist scalars aq, ..., a,.+1, not all of which are zero so that

n+1 n+1 n+1
E CLZ'(.’L',L' — Q3n+2) = E a;r; + | — E a; | Tpig = 0.
i=1 =1 =1

=ian+42

Then, by construction Z?jf a; = 0. Define A; := {z; : a; > 0} and Ay := {z; : q; <
0}. Clearly, A = AjUA, forms a partition and A, Ay are both nonempty. Suppose
As was empty. Then a; > 0 for all 1 < i < n+ 2. But a,,9 1= —Z?;Lll a; <0

contradicts this assumption (The same holds for A;). We have that

0= Z a; T; + Z a;T; <= Z ;gz/xz: Z a;Tj,

{i:a;<0} {j:a; >0} {i:a;i<0} >q {j:a; >0}



and on the other hand

0= Z a; + Z a; <= Z —a; = Z aj::w>0.

{i:a;<0} {j:a;>0} {i:a;<0} {j:a;>0}

Altogether this yields

> m=
7 710
w w

{i:a;<0} {j:a; >0}
A - 7 A ~~
€conv(Ay) €conv(A2)

which completes the proof. The theorem is called Radon’s Theorem.



Intro to Sparse Matrices in MATLAB (5 Points)

Throughout the course we will work in the finite dimensional setting, i.e. we dis-
cretely represent gray value images f : 2 — R or color images f :  — R? as (vector-
ized) matrices f € R™*" (vec(f) € R™) respectively f € R™ ™3 (vec(f) € R3™").
To discretely express functionals like the total variation for smooth f

TV(f) = / IV ()] da

you will therefore need a discrete gradient operator

7 ()

for vectorized representations vec(f) of images f € R™*™ so that

TV(f) = [[Vvee(f)llza = Z \/(Dx -vee(f))7 + (Dy - vee(f))7.

The aim of this exercise is to derive the gradient operator and learn how to implement
it with MATLAB.

Exercise 4 (1 Point). Let f € R™*" be a discrete grayvalue image. Your task is
to find matrices D, and D, for computing the forward differences f,, f, in x and
y-direction of the image f with Neumann boundary conditions so that:

Jiz—Ju Sfis—Jfi2 - Jin— fiwey O
. — 0
fo— oD, = fa2 | fa | 0 0
fmZ_fml fmn_fm(n—l) 0
and
f21_f11 f22_f12 an_fln
_ f31_f21 f3n_f2n
fy=Dy f= : : (2)
fml - f(mfl)l ce fmn - f(mfl)n
0 0 0

Solution. The corresponding operators D, and Dy are given as follows:

D.,=]0 1 0 0 D=9 0 00 (3)
0 0 1 1 0
0 0 1 0 00 1
0 L0 0 0 0 0



Exercise 5 (1 Point). Implement the derivative operators from the previous exercise
using MATLABSs spdiags command. Load the image from the file Vegetation-028. jpg
using the command imread and convert it to a grayvalue image using the command
rgb2gray. Finally apply the operators to the image and display your results using
imshow.

For our algorithms it is more convenient to represent an image f as a vector
vec(f) € R™, that means that the columns of f are stacked one over the other.

Exercise 6 (1 Point). Derive a gradient operator

D,
7= (o)
for vectorized images so that

D, -vee(f) = vee(f,) Dy -veelf) = vee(f,)
You can use that it holds that for matrices A, X, B
AXB =C <= (B' ® A)vec(X) = vec(CO)

where ® denote the Kronecker (MATLAB: kron) product.

Experimentally verify that the results of Ex. 2 and Ex. 3 are equal by reshaping
them to the same size using MATLABs reshape or the : operator, and showing
that the norm of the difference of both results is zero.

Solution. We have f, = f - D,=1- f- D,, where I is the identity matrix. If we

set A:==1, X .= f, B:= D, and C := f, we obtain using the formula,
D,=D] ®1I. (4)

We have f,=D,-f=D, - f-I. Weset A:=D,, X := f, B:=1 and C := f, and
obtain using the formula: .

D,=1®D,. (5)
Exercise 7 (1 Point). Assemble an operator V. for computing the gradient (or
more precisely the Jacobian) of a color image f € R™*™*3 using MATLABs cat and
kron commands.

Solution.

0

0

D, I® D,

0|~ <I ® Dy) (6)
0

D

Exercise 8 (1 Point). Compute the color total variation given as

nm

(Dm : Vec(fr»i (Dy - Vec(fg))i (Dw - vec(f, ))z
TV(f) = |[Vevee(f)llr1 = ; ((Dy vee(f,))i (Dy - vec(f,))i (D, - vec(fZ))i)

of the two images Vegetation-028. jpg and Vegetation-043. jpg and compare the
values. What do you observe? Why?
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