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Convex sets and functions (9 Points + 4 Bonus)
Exercise 1 (4 Points). Let f : Rn → R ∪ {+∞} be proper. Prove the equivalence
of the following statements:

• f is convex.

• epi(f) :=

{(
x
y

)
∈ Rn+1 : f(x) ≤ y

}
is convex.

Exercise 2 (3 Points). Show that the following functions f : Rn → R are convex:

• f(x) = ‖x‖, for any norm ‖·‖.

• f(x) = g(Ax), for convex g : Rm → R and linear A : Rn → Rm.

• The perspective of a convex function g : Rn−1 → R given as

f(x, t) :=

{
t g
(
x
t

)
, if t > 0 and x

t
∈ dom(g),

+∞, otherwise.

Exercise 3 (2 Points). Let E be an Euclidean space. Show that the following two
statements are equivalent:

• f : E→ R is convex,

• f (
∑n

i=1 αixi) ≤
∑n

i=1 αif(xi), for xi ∈ E, αi ∈ [0, 1],
∑n

i=1 αi = 1, n ≥ 1.

Exercise 4 (4 points). Prove the following statement using induction over m: Let
K1, . . . , Km ⊂ Rn, m ≥ n + 1, be convex, such that for all I ⊂ {1, . . . ,m} with
|I| = n+ 1 it holds that

⋂
i∈I Ki 6= ∅. Then

⋂m
i=1Ki 6= ∅.

Hint: Use exercise 4 from the first exercise sheet.
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Image Cartooning (12 Points)
Exercise 5 (12 Points). In this exercise your task is to compute a piecewise constant,
cartoonish looking approximation of the input image (consisting of n pixels). This
can be done as follows: We begin selecting k different colors {c1, c2, . . . ck} ⊂ R3

that are most present in the image, for example c1 = red, c2 = green, c3 = blue and
c4 = yellow. We then segment the image into k disjoint regions, so that the overall
boundary length is short and at the same time the pixels in the i-th region are close
to the i-th color.

As explained in the lecture (cf. chapter 0), one can solve the following optimiza-
tion problem

min
u∈Rk×n

〈u, f〉+
n∑

j=1

δ{u(:, j) ∈ ∆k}+ α

k∑
i=1

‖Du(i, :)‖1 (1)

where f ∈ Rk×n, fij is given as the Euclidean distance of pixel j to color i, u(i, :) ∈ Rn

is the i-th row of u and u(:, j) ∈ Rk is the j-th column. The matrix D : Rn → R2n

computes the gradient using finite differences (see the previous sheet).
Let ũ ∈ Rk×n be a minimizer of problem (1). The cartoon image ū ∈ R3×n is

given as

ū(:, j) := cm, where m := arg max
1≤i≤k

ũ(i, j), ∀1 ≤ j ≤ n. (2)

In this exercise, you will use projected gradient descent to solve the above problem.
This algorithm performs (A) a gradient descent step on the differentiable part of
the energy, followed by a projection (B) onto the simplex ∆k.

(A) ut+
1
2 = ut − τ∇E(ut),

(B) u(:, j)t+1 = arg min
u∈∆k

‖u− ut+
1
2 (:, j)‖, ∀1 ≤ j ≤ n.

(3)

Since the norm ‖·‖1 is not differentiable at 0, we use a smooth approximation. The
function E is given as:

E(u) = 〈u, f〉+ α
k∑

i=1

‖Du(i, :)‖ε,

where ‖x‖ε =
∑

i

√
x2
i + ε. Proceed as follows:

1. Load a color input image and compute the colors ci ∈ R3 using k-means
clustering (MATLAB: use the kmeans command). From that, construct the
matrix f ∈ Rk×n as described above.

2. Compute the gradient ∇E of the function E : Rk×n → R. Hint: you can do
this separately for each component 1 ≤ i ≤ k.
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3. Implement the projected gradient descent method (3). For the projection onto
the simplex (B), use the supplied helper file projSimplex.m.

4. Run the algorithm to compute an approximate minimizer of (1). Terminate
the iteration once 1

n·k ‖u
t+1 − ut‖1 < tol for some tolerance tol > 0.

5. Compute ū ∈ R3×n as in (2) and visualize it as a color image. Experiment
with different step sizes τ , parameters ε, α, k, tol and initialisations u0 ∈ Rk×n.
What do you observe?

The resulting ū ∈ R3×n for k = 5, ε = 0.1, τ = 0.25, α = 0.1 and tol = 10−6 should
look like the following:

input image ū ∈ R3×n
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