Lecture: T. Wu
Exercises: E. Laude, T. Möllenhoff
Summer Semester 2017

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 2

Room: 02.09.023
Monday, 15.05.2017, 12:15-14:00
Submission deadline: Wednesday, 10.05.2017, 16:15, Room 02.09.023

Convex sets and functions

(9 Points +4 Bonus)
Exercise 1 (4 Points). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper. Prove the equivalence of the following statements:

- f is convex.
- $\operatorname{epi}(f):=\left\{\binom{x}{y} \in \mathbb{R}^{n+1}: f(x) \leq y\right\}$ is convex.

Exercise 2 (3 Points). Show that the following functions $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ are convex:

- $f(x)=\|x\|$, for any norm $\|\cdot\|$.
- $f(x)=g(A x)$, for convex $g: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ and linear $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
- The perspective of a convex function $g: \mathbb{R}^{n-1} \rightarrow \overline{\mathbb{R}}$ given as

$$
f(x, t):= \begin{cases}\operatorname{tg}\left(\frac{x}{t}\right), & \text { if } t>0 \text { and } \frac{x}{t} \in \operatorname{dom}(g) \\ +\infty, & \text { otherwise }\end{cases}
$$

Exercise 3 (2 Points). Let \mathbb{E} be an Euclidean space. Show that the following two statements are equivalent:

- $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ is convex,
- $f\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right)$, for $x_{i} \in \mathbb{E}, \alpha_{i} \in[0,1], \sum_{i=1}^{n} \alpha_{i}=1, n \geq 1$.

Exercise 4 (4 points). Prove the following statement using induction over m : Let $K_{1}, \ldots, K_{m} \subset \mathbb{R}^{n}, m \geq n+1$, be convex, such that for all $\mathcal{I} \subset\{1, \ldots, m\}$ with $|\mathcal{I}|=n+1$ it holds that $\bigcap_{i \in \mathcal{I}} K_{i} \neq \emptyset$. Then $\bigcap_{i=1}^{m} K_{i} \neq \emptyset$.

Hint: Use exercise 4 from the first exercise sheet.

Image Cartooning

(12 Points)
Exercise 5 (12 Points). In this exercise your task is to compute a piecewise constant, cartoonish looking approximation of the input image (consisting of n pixels). This can be done as follows: We begin selecting k different colors $\left\{c_{1}, c_{2}, \ldots c_{k}\right\} \subset \mathbb{R}^{3}$ that are most present in the image, for example $c_{1}=$ red, $c_{2}=$ green, $c_{3}=$ blue and $c_{4}=$ yellow. We then segment the image into k disjoint regions, so that the overall boundary length is short and at the same time the pixels in the i-th region are close to the i-th color.

As explained in the lecture (cf. chapter 0), one can solve the following optimization problem

$$
\begin{equation*}
\min _{u \in \mathbb{R}^{k \times n}}\langle u, f\rangle+\sum_{j=1}^{n} \delta\left\{u(:, j) \in \Delta^{k}\right\}+\alpha \sum_{i=1}^{k}\|D u(i,:)\|_{1} \tag{1}
\end{equation*}
$$

where $f \in \mathbb{R}^{k \times n}, f_{i j}$ is given as the Euclidean distance of pixel j to color $i, u(i,:) \in \mathbb{R}^{n}$ is the i-th row of u and $u(:, j) \in \mathbb{R}^{k}$ is the j-th column. The matrix $D: \mathbb{R}^{n} \rightarrow \mathbb{R}^{2 n}$ computes the gradient using finite differences (see the previous sheet).

Let $\tilde{u} \in \mathbb{R}^{k \times n}$ be a minimizer of problem (1). The cartoon image $\bar{u} \in \mathbb{R}^{3 \times n}$ is given as

$$
\begin{equation*}
\bar{u}(:, j):=c_{m}, \quad \text { where } \quad m:=\arg \max _{1 \leq i \leq k} \tilde{u}(i, j), \quad \forall 1 \leq j \leq n . \tag{2}
\end{equation*}
$$

In this exercise, you will use projected gradient descent to solve the above problem. This algorithm performs (A) a gradient descent step on the differentiable part of the energy, followed by a projection (B) onto the simplex Δ^{k}.

$$
\begin{align*}
& \text { (A) } u^{t+\frac{1}{2}}=u^{t}-\tau \nabla E\left(u^{t}\right) \\
& \text { (B) } u(:, j)^{t+1}=\arg \min _{u \in \Delta^{k}}\left\|u-u^{t+\frac{1}{2}}(:, j)\right\|, \forall 1 \leq j \leq n . \tag{3}
\end{align*}
$$

Since the norm $\|\cdot\|_{1}$ is not differentiable at 0 , we use a smooth approximation. The function E is given as:

$$
E(u)=\langle u, f\rangle+\alpha \sum_{i=1}^{k}\|D u(i,:)\|_{\varepsilon}
$$

where $\|x\|_{\varepsilon}=\sum_{i} \sqrt{x_{i}^{2}+\varepsilon}$. Proceed as follows:

1. Load a color input image and compute the colors $c_{i} \in \mathbb{R}^{3}$ using k -means clustering (MATLAB: use the kmeans command). From that, construct the matrix $f \in \mathbb{R}^{k \times n}$ as described above.
2. Compute the gradient ∇E of the function $E: \mathbb{R}^{k \times n} \rightarrow \mathbb{R}$. Hint: you can do this separately for each component $1 \leq i \leq k$.
3. Implement the projected gradient descent method (3). For the projection onto the simplex (B), use the supplied helper file projSimplex.m.
4. Run the algorithm to compute an approximate minimizer of (1). Terminate the iteration once $\frac{1}{n \cdot k}\left\|u^{t+1}-u^{t}\right\|_{1}<$ tol for some tolerance tol >0.
5. Compute $\bar{u} \in \mathbb{R}^{3 \times n}$ as in (2) and visualize it as a color image. Experiment with different step sizes τ, parameters ε, α, k, tol and initialisations $u^{0} \in \mathbb{R}^{k \times n}$. What do you observe?

The resulting $\bar{u} \in \mathbb{R}^{3 \times n}$ for $k=5, \varepsilon=0.1, \tau=0.25, \alpha=0.1$ and tol $=10^{-6}$ should look like the following:

input image

$\bar{u} \in \mathbb{R}^{3 \times n}$

